ﻻ يوجد ملخص باللغة العربية
We consider a simple random walk on $mathbb{Z}^d$ started at the origin and stopped on its first exit time from $(-L,L)^d cap mathbb{Z}^d$. Write $L$ in the form $L = m N$ with $m = m(N)$ and $N$ an integer going to infinity in such a way that $L^2 sim A N^d$ for some real constant $A > 0$. Our main result is that for $d ge 3$, the projection of the stopped trajectory to the $N$-torus locally converges, away from the origin, to an interlacement process at level $A d sigma_1$, where $sigma_1$ is the exit time of a Brownian motion from the unit cube $(-1,1)^d$ that is independent of the interlacement process. The above problem is a variation on results of Windisch (2008) and Sznitman (2009).
We study a biased random walk on the interlacement set of $mathbb{Z}^d$ for $dgeq 3$. Although the walk is always transient, we can show, in the case $d=3$, that for any value of the bias the walk has a zero limiting speed and actually moves slower than any power.
We consider the limit behavior of a one-dimensional random walk with unit jumps whose transition probabilities are modified every time the walk hits zero. The invariance principle is proved in the scheme of series where the size of modifications depe
We consider a random walk with a negative drift and with a jump distribution which under Cramers change of measure belongs to the domain of attraction of a spectrally positive stable law. If conditioned to reach a high level and suitably scaled, this
We consider a random walk $tilde S$ which has different increment distributions in positive and negative half-planes. In the upper half-plane the increments are mean-zero i.i.d. with finite variance. In the lower half-plane we consider two cases: inc
A random walk in a sparse random environment is a model introduced by Matzavinos et al. [Electron. J. Probab. 21, paper no. 72: 2016] as a generalization of both a simple symmetric random walk and a classical random walk in a random environment. A ra