ﻻ يوجد ملخص باللغة العربية
The use of multi-modal data such as the combination of whole slide images (WSIs) and gene expression data for survival analysis can lead to more accurate survival predictions. Previous multi-modal survival models are not able to efficiently excavate the intrinsic information within each modality. Moreover, despite experimental results show that WSIs provide more effective information than gene expression data, previous methods regard the information from different modalities as similarly important so they cannot flexibly utilize the potential connection between the modalities. To address the above problems, we propose a new asymmetrical multi-modal method, termed as AMMASurv. Specifically, we design an asymmetrical multi-modal attention mechanism (AMMA) in Transformer encoder for multi-modal data to enable a more flexible multi-modal information fusion for survival prediction. Different from previous works, AMMASurv can effectively utilize the intrinsic information within every modality and flexibly adapts to the modalities of different importance. Extensive experiments are conducted to validate the effectiveness of the proposed model. Encouraging results demonstrate the superiority of our method over other state-of-the-art methods.
Automated whole slide image (WSI) tagging has become a growing demand due to the increasing volume and diversity of WSIs collected nowadays in histopathology. Various methods have been studied to classify WSIs with single tags but none of them focuse
Convolutional neural networks have led to significant breakthroughs in the domain of medical image analysis. However, the task of breast cancer segmentation in whole-slide images (WSIs) is still underexplored. WSIs are large histopathological images
Histology review is often used as the `gold standard for disease diagnosis. Computer aided diagnosis tools can potentially help improve current pathology workflows by reducing examination time and interobserver variability. Previous work in cancer gr
There has been a long pursuit for precise and reproducible glomerular quantification on renal pathology to leverage both research and practice. When digitizing the biopsy tissue samples using whole slide imaging (WSI), a set of serial sections from t
Automatic and accurate Gleason grading of histopathology tissue slides is crucial for prostate cancer diagnosis, treatment, and prognosis. Usually, histopathology tissue slides from different institutions show heterogeneous appearances because of dif