ترغب بنشر مسار تعليمي؟ اضغط هنا

Atomic-Scale Probing of Heterointerface Phonon Bridges in Nitride Semiconductor

97   0   0.0 ( 0 )
 نشر من قبل Peng Gao
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Interface phonon modes that are generated by several atomic layers at the heterointerface play a major role in the interface thermal conductance for nanoscale high-power devices such as nitride-based high-electron-mobility transistors and light emitting diodes. Here we measure the local phonon spectra across AlN/Si and AlN/Al interfaces using atomically resolved vibrational electron energy-loss spectroscopy in a scanning transmission electron microscope. At the AlN/Si interface, we observe various localized phonon modes, of which the extended and interfacial modes act as bridges to connect the bulk AlN modes and bulk Si modes, and are expected to boost the inelastic phonon transport thus substantially contribute to interface thermal conductance. In comparison, no such phonon bridge is observed at the AlN/Al interface, for which partially extended modes dominate the interface thermal conductivity. This work provides valuable insights into understanding the interfacial thermal transport in nitride semiconductors and useful guidance for thermal management via interface engineering.

قيم البحث

اقرأ أيضاً

67 - K. G. Rana , S. Parui , 2013
We investigate electron transport across a complex oxide heterointerface of La$_{0.67}$Sr$_{0.33}$MnO$_3$ (LSMO) on Nb:SrTiO$_3$ (Nb:STO) at different temperatures. For this, we employ the conventional current-voltage method as well as the technique of Ballistic Electron Emission Microscopy (BEEM), which can probe lateral inhomogeneities in transport at the nanometer scale. From current-voltage measurements, we find that the Schottky Barrier height (SBH) at the LSMO/Nb:STO interface decreases at low temperatures accompanied by a larger than unity ideality factor. This is ascribed to the tunneling dominated transport caused by the narrowing of the depletion width at the interface. However, BEEM studies of such unbiased interfaces, do not exhibit SBH lowering at low temperatures, implying that this is triggered by the modification of the interface due to an applied bias and is not an intrinsic property of the interface. Interestingly, the SBH at the nanoscale, as extracted from BEEM studies, at different locations in the device is found to be spatially homogeneous and similar both at room temperature and at low temperatures. Our results highlight the application of BEEM in characterizing electron transport and their homogeneity at such unbiased complex oxide interfaces and yields new insights into the origin of the temperature dependence of the SBH at biased interfaces.
Understanding the formation of metal-molecule contact at the microscopic level is the key towards controlling and manipulating atomic scale devices. Employing two isomers of bipyridine, $4, 4^prime$ bipyridine and $2, 2^prime$ bipyridine between gold electrodes, here, we investigate the formation of metal-molecule bond by studying charge transport through single molecular junctions using a mechanically controlled break junction technique at room temperature. While both molecules form molecular junctions during the breaking process, closing traces show the formation of molecular junctions unambiguously for $4, 4^prime$ bipyridine via a conductance jump from the tunneling regime, referred as `jump to molecular contact, being absent for $2, 2^prime$ bipyridine. Through statistical analysis of the data, along with, molecular dynamics and first-principles calculations, we establish that contact formation is strongly connected with the molecular structure of the electrodes as well as how the junction is broken during breaking process, providing important insights for using a single-molecule in an electronic device.
We observe a series of sharp resonant features in the differential conductance of graphene-hexagonal boron nitride-graphene tunnel transistors over a wide range of bias voltages between $sim$10 and 200 mV. We attribute them to electron tunneling assi sted by the emission of phonons of well-defined energy. The bias voltages at which they occur are insensitive to the applied gate voltage and hence independent of the carrier densities in the graphene electrodes, so plasmonic effects can be ruled out. The phonon energies corresponding to the resonances are compared with the lattice dispersion curves of graphene-boron nitride heterostructures and are close to peaks in the single phonon density of states.
The effect of electron-phonon interactions in the conductance through metallic atomic wires is theoretically analyzed. The proposed model allows to consider an atomic size region electrically and mechanically coupled to bulk electrodes. We show that under rather general conditions the features due to electron-phonon coupling are described by universal functions of the system transmission coefficients. It is predicted that the reduction of the conductance due to electron-phonon coupling which is observed close to perfect transmission should evolve into an enhancement at low transmission. This crossover can be understood in a transparent way as arising from the competition between elastic and inelastic processes.
Imaging materials and inner structures with resolution below the diffraction limit has become of fundamental importance in recent years for a wide variety of applications. In this work, we report sub-diffractive internal structure diagnosis of hexago nal boron nitride by exciting and imaging hyperbolic phonon polaritons. Based on their unique propagation properties, we are able to accurately locate defects in the crystal interior with nanometer resolution. The precise location, size and geometry of the concealed defects is reconstructed by analyzing the polariton wavelength, reflection coefficient and their dispersion. We have also studied the evolution of polariton reflection, transmission and scattering as a function of defect size and photon frequency. The nondestructive high-precision polaritonic structure diagnosis technique introduced here can be also applied to other hyperbolic or waveguide systems, and may be deployed in the next-generation bio-medical imaging, sensing and fine structure analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا