ﻻ يوجد ملخص باللغة العربية
The nuclear level densities and level-density parameters in fissioning nuclei at their saddle points of fission barriers - $a_{f}$, as well as those for neutron - $a_{n}$, proton - $a_{p}$ , and $alpha$-particle - $a_{alpha}$ emission residues at the ground states are calculated for isotopic chains of superheavy nuclei with $Z$=112-120. The calculations are performed with the superfluid formalism using the single-particle energies obtained from the diagonalization of the deformed Woods-Saxon potential. Spectra were generated at global minima of the adiabatic potential energy surfaces, found by the multidimensional minimization method, and at the proper saddle points, found by the immersion water flow technique on multidimensional energy grids, with allowed the reflection and axial symmetry breaking. The influence of shell effects on the energy dependence of the ratios of level-density parameters corresponding to residues of the considered decay modes to those of neutron emission is studied. We have shown that, in contrast to the $a_{f}/a_{n}$ ratio, the $a_{p}/a_{n}$ and $a_{alpha}/a_{n}$ ratios do not show characteristic maxima depending on the excitation energy of the compound nucleus being formed. In the case of alpha decay, we identified the collective enhancement caused by cluster degrees of freedom to play quite an important role. The energetic course of the variability of the level density parameters before reaching the asymptotic value, not taken into account so far, will be of great importance for the estimation of the probabilities of de-excitation cascades via light particles emission in competition with splitting and thus for the determination of the survival probabilities and finally for the total production cross-sections of superheavy nuclei in channels with their (light particles) participation.
We systematically study the nuclear level densities of superheavy nuclei, including odd systems, using the single-particle energies obtained with the Woods-Saxon potential diagonalization. Minimization over many deformation parameters for the global
Relativistic energy density functionals (REDF) provide a complete and accurate, global description of nuclear structure phenomena. A modern semi-empirical functional, adjusted to the nuclear matter equation of state and to empirical masses of deforme
The impact of pairing correlations on the fission barriers is investigated in Relativistic Hartree Bogoliubov (RHB) theory and Relativistic Mean Field (RMF)+BCS calculations. It is concluded that the constant gap approximation in the usual RMF+BCS ca
Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy we calculated static fission barriers $B_{f}$ for 1305 heavy and superheavy nuclei $98leq Z leq 126
The cranked relativistic Hartree-Bogoliubov (CRHB) theory has been applied for a systematic study of pairing and rotational properties of actinides and light superheavy nuclei. Pairing correlations are taken into account by the Brink-Booker part of f