ترغب بنشر مسار تعليمي؟ اضغط هنا

In vivo functional and structural retina imaging using multimodal photoacoustic remote sensing microscopy and optical coherence tomography

165   0   0.0 ( 0 )
 نشر من قبل Zohreh Hosseinaee
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We have developed a multimodal photoacoustic remote sensing (PARS) microscope combined with swept source optical coherence tomography for in vivo, non-contact retinal imaging. Building on the proven strength of multiwavelength PARS imaging, the system is applied for estimating retinal oxygen saturation in the rat retina. The capability of the technology is demonstrated by imaging both microanatomy and the microvasculature of the retina in vivo. To our knowledge this is the first time a non-contact photoacoustic imaging technique is employed for in vivo oxygen saturation measurement in the retina.



قيم البحث

اقرأ أيضاً

Early diagnosis of ocular diseases improves the understanding of pathophysiology and helps with accurate monitoring and effective treatment. Advanced multimodal ocular imaging platforms play a crucial role in the visualization of the ocular component s and provide clinicians with a valuable tool for evaluating different eye diseases. Here, for the first time, we present a non-contact, multimodal photoacoustic remote sensing (PARS) microscopy and swept-source optical coherence tomography (SS-OCT) for in-vivo functional and structural imaging of the eye. The system provides complementary imaging contrasts of optical absorption and optical scattering and is used for non-contact, in-vivo imaging of the murine eye. Results of vasculature and structural imaging as well as melanin content in the retinal pigment epithelium (RPE) layer are presented. Multiwavelength PARS microscopy using Stimulated Raman Scattering (SRS) is applied for the first time, to provide non-contact oxygen saturation estimation in the ocular tissue. The reported work may be a major step toward clinical translation of ophthalmic technologies and has the potential to advance the diagnosis and treatment of ocular diseases.
Histological images are critical in the diagnosis and treatment of cancers. Unfortunately, the current method for capturing these microscopy images require resource intensive tissue preparation that delays diagnosis for many days to a few weeks. To s treamline this process, clinicians are limited to assessing small macroscopically representative subsets of tissues. Here, we present a combined photoacoustic remote sensing (PARS) microscope and swept source optical coherence tomography (SS-OCT) system designed to circumvent these diagnostic limitations. The proposed multimodal microscope provides label-free three-dimensional depth resolved virtual histology visualizations, capturing nuclear and extranuclear tissue morphology directly on thick unprocessed specimens. The capabilities of the proposed method are demonstrated directly in unprocessed formalin fixed resected tissues. Here, we present the first images of nuclear contrast in resected human tissues, and the first 3-dimensional visualization of subsurface nuclear morphology in resected Rattus tissues, captured with a non-contact photoacoustic system. Moreover, we present the first co-registered OCT and PARS images enabling direct histological assessment of unprocessed tissues. This work represents a vital step towards the development of a real-time histological imaging modality to circumvent the limitations of current histopathology techniques.
We present the first label-free, non-contact, in-vivo imaging of the ocular vasculature using photoacoustic remote sensing (PARS) microscopy. Both anterior and posterior segments mouse eye were imaged. Vasculature of iris, sclera and retina tissues w ere clearly resolved. To best of our knowledge this the first study showing non-contact photoacoustic imaging conducted on in-vivo ocular tissue. We believe that PARS microscopy has the potential to advance the diagnosis and treatment of ocular diseases.
Optical tomographic cross-sectional images of biological samples were made possible by interferometric imaging techniques such as Optical Coherence Tomography (OCT). Owing to its unprecedented view of the sample, OCT has become a gold standard, namel y for human retinal imaging in the clinical environment. In this Letter, we present Optical Incoherence Tomography (OIT): a completely digital method extending the possibility to generate tomographic retinal cross-sections to non-interferometric imaging systems such as en-face AO-ophthalmoscopes. We demonstrate that OIT can be applied to different imaging modalities using back-scattered and multiply-scattered light including systems without inherent optical sectioning. We show that OIT can be further used to guide focus position when the user is blind focusing, allowing precise imaging of translucent retinal structures, the vascular plexuses and the retinal pigment epithelium using respectively split detection, motion contrast, and autofluorescence techniques.
We present a laser scanning reflection-matrix microscopy combining the scanning of laser focus and the wide-field mapping of the electric field of the backscattered waves for eliminating higher-order aberrations even in the presence of strong multipl e light scattering noise. Unlike conventional confocal laser scanning microscopy, we record the amplitude and phase maps of reflected waves from the sample not only at the confocal pinhole, but also at other non-confocal points. These additional measurements lead us to constructing a time-resolved reflection matrix, with which the sample-induced aberrations for the illumination and detection pathways are separately identified and corrected. We realized in vivo reflectance imaging of myelinated axons through an intact skull of a living mouse with the spatial resolution close to the ideal diffraction limit. Furthermore, we demonstrated near-diffraction-limited multiphoton imaging through an intact skull by physically correcting the aberrations identified from the reflection matrix. The proposed method is expected to extend the range of applications, where the knowledge of the detailed microscopic information deep within biological tissues is critical.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا