ترغب بنشر مسار تعليمي؟ اضغط هنا

Label-free, non-contact, in-vivo ophthalmic imaging using photoacoustic remote sensing microscopy

91   0   0.0 ( 0 )
 نشر من قبل Zohreh Hosseinaee
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first label-free, non-contact, in-vivo imaging of the ocular vasculature using photoacoustic remote sensing (PARS) microscopy. Both anterior and posterior segments mouse eye were imaged. Vasculature of iris, sclera and retina tissues were clearly resolved. To best of our knowledge this the first study showing non-contact photoacoustic imaging conducted on in-vivo ocular tissue. We believe that PARS microscopy has the potential to advance the diagnosis and treatment of ocular diseases.

قيم البحث

اقرأ أيضاً

Early diagnosis of ocular diseases improves the understanding of pathophysiology and helps with accurate monitoring and effective treatment. Advanced multimodal ocular imaging platforms play a crucial role in the visualization of the ocular component s and provide clinicians with a valuable tool for evaluating different eye diseases. Here, for the first time, we present a non-contact, multimodal photoacoustic remote sensing (PARS) microscopy and swept-source optical coherence tomography (SS-OCT) for in-vivo functional and structural imaging of the eye. The system provides complementary imaging contrasts of optical absorption and optical scattering and is used for non-contact, in-vivo imaging of the murine eye. Results of vasculature and structural imaging as well as melanin content in the retinal pigment epithelium (RPE) layer are presented. Multiwavelength PARS microscopy using Stimulated Raman Scattering (SRS) is applied for the first time, to provide non-contact oxygen saturation estimation in the ocular tissue. The reported work may be a major step toward clinical translation of ophthalmic technologies and has the potential to advance the diagnosis and treatment of ocular diseases.
We have developed a multimodal photoacoustic remote sensing (PARS) microscope combined with swept source optical coherence tomography for in vivo, non-contact retinal imaging. Building on the proven strength of multiwavelength PARS imaging, the syste m is applied for estimating retinal oxygen saturation in the rat retina. The capability of the technology is demonstrated by imaging both microanatomy and the microvasculature of the retina in vivo. To our knowledge this is the first time a non-contact photoacoustic imaging technique is employed for in vivo oxygen saturation measurement in the retina.
Histological images are critical in the diagnosis and treatment of cancers. Unfortunately, the current method for capturing these microscopy images require resource intensive tissue preparation that delays diagnosis for many days to a few weeks. To s treamline this process, clinicians are limited to assessing small macroscopically representative subsets of tissues. Here, we present a combined photoacoustic remote sensing (PARS) microscope and swept source optical coherence tomography (SS-OCT) system designed to circumvent these diagnostic limitations. The proposed multimodal microscope provides label-free three-dimensional depth resolved virtual histology visualizations, capturing nuclear and extranuclear tissue morphology directly on thick unprocessed specimens. The capabilities of the proposed method are demonstrated directly in unprocessed formalin fixed resected tissues. Here, we present the first images of nuclear contrast in resected human tissues, and the first 3-dimensional visualization of subsurface nuclear morphology in resected Rattus tissues, captured with a non-contact photoacoustic system. Moreover, we present the first co-registered OCT and PARS images enabling direct histological assessment of unprocessed tissues. This work represents a vital step towards the development of a real-time histological imaging modality to circumvent the limitations of current histopathology techniques.
Label-free imaging approaches seek to simplify and augment histopathologic assessment by replacing the current practice of staining by dyes to visualize tissue morphology with quantitative optical measurements. Quantitative phase imaging (QPI) operat es with visible/UV light and thus provides a resolution matched to current practice. Here we introduce and demonstrate confocal QPI for label-free imaging of tissue sections and assess its utility for manual histopathologic inspection. Imaging cancerous and normal adjacent human breast and prostate, we show that tissue structural organization can be resolved with high spatial detail comparable to conventional H&E stains. Our confocal QPI images are found to be free of halo, solving this common problem in QPI. We further describe and apply a virtual imaging system based on Finite-Difference Time-Domain (FDTD) calculations to quantitatively compare confocal with wide-field QPI methods and explore performance limits using numerical tissue phantoms.
Malignant brain tumors are among the deadliest neoplasms with the lowest survival rates of any cancer type. In considering surgical tumor resection, suboptimal extent of resection is linked to poor clinical outcomes and lower overall survival rates. Currently available tools for intraoperative histopathological assessment require an average of 20 minutes processing and are of limited diagnostic quality for guiding surgeries. Consequently, there is an unaddressed need for a rapid imaging technique to guide maximal resection of brain tumors. Working towards this goal, presented here is an all optical non-contact label-free reflection mode photoacoustic remote sensing (PARS) microscope. By using a tunable excitation laser, PARS takes advantage of the endogenous optical absorption peaks of DNA and cytoplasm to achieve virtual contrast analogous to standard hematoxylin and eosin (H and E) staining. In conjunction, a fast 266 nm excitation is used to generate large grossing scans and rapidly assess small fields in real-time with hematoxylin-like contrast. Images obtained using this technique show comparable quality and contrast to the current standard for histopathological assessment of brain tissues. Using the proposed method, rapid, high-throughput, histological-like imaging was achieved in unstained brain tissues, indicating PARS utility for intraoperative guidance to improve extent of surgical resection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا