ﻻ يوجد ملخص باللغة العربية
As one of the most promising applications in future Internet of Things, Internet of Vehicles (IoV) has been acknowledged as a fundamental technology for developing the Intelligent Transportation Systems in smart cities. With the emergence of the sixth generation (6G) communications technologies, massive network infrastructures will be densely deployed and the number of network nodes will increase exponentially, leading to extremely high energy consumption. There has been an upsurge of interest to develop the green IoV towards sustainable vehicular communication and networking in the 6G era. In this paper, we present the main considerations for green IoV from five different scenarios, including the communication, computation, traffic, Electric Vehicles (EVs), and energy harvesting management. The literatures relevant to each of the scenarios are compared from the perspective of energy optimization (e.g., with respect to resource allocation, workload scheduling, routing design, traffic control, charging management, energy harvesting and sharing, etc.) and the related factors affecting energy efficiency (e.g., resource limitation, channel state, network topology, traffic condition, etc.). In addition, we introduce the potential challenges and the emerging technologies in 6G for developing green IoV systems. Finally, we discuss the research trends in designing energy-efficient IoV systems.
The engineering vision of relying on the ``smart sky for supporting air traffic and the ``Internet above the clouds for in-flight entertainment has become imperative for the future aircraft industry. Aeronautical ad hoc Networking (AANET) constitutes
In this article, we first present the vision, key performance indicators, key enabling techniques (KETs), and services of 6G wireless networks. Then, we highlight a series of general resource management (RM) challenges as well as unique RM challenges
Graph jobs represent a wide variety of computation-intensive tasks in which computations are represented by graphs consisting of components (denoting either data sources or data processing) and edges (corresponding to data flows between the component
Due to the advanced capabilities of the Internet of Vehicles (IoV) components such as vehicles, Roadside Units (RSUs) and smart devices as well as the increasing amount of data generated, Federated Learning (FL) becomes a promising tool given that it
Current network access infrastructures are characterized by heterogeneity, low latency, high throughput, and high computational capability, enabling massive concurrent connections and various services. Unfortunately, this design does not pay signific