ﻻ يوجد ملخص باللغة العربية
In this paper we are concerned with the regularity of solutions to a nonlinear elliptic system of $m$ equations in divergence form, satisfying $p$ growth from below and $q$ growth from above, with $p leq q$; this case is known as $p, q$-growth conditions. Well known counterexamples, even in the simpler case $p=q$, show that solutions to systems may be singular; so, it is necessary to add suitable structure conditions on the system that force solutions to be regular. Here we obtain local boundedness of solutions under a componentwise coercivity condition. Our result is obtained by proving that each component $u^alpha$ of the solution $u=(u^1,...,u^m)$ satisfies an improved Caccioppolis inequality and we get the boundedness of $u^{alpha}$ by applying De Giorgis iteration method, provided the two exponents $p$ and $q$ are not too far apart. Let us remark that, in dimension $n=3$ and when $p=q$, our result works for $frac{3}{2} < p < 3$, thus it complements the one of Bjorn whose technique allowed her to deal with $p leq 2$ only. In the final section, we provide applications of our result.
We prove global essential boundedness for the weak solutions of divergence form quasilinear systems. The principal part of the differential operator is componentwise coercive and supports controlled growths with respect to the solution and its gradie
We study boundary blow-up solutions of semilinear elliptic equations $Lu=u_+^p$ with $p>1$, or $Lu=e^{au}$ with $a>0$, where $L$ is a second order elliptic operator with measurable coefficients. Several uniqueness theorems and an existence theorem are obtained.
We revisit the following nonlinear critical elliptic equation begin{equation*} -Delta u+Q(y)u=u^{frac{N+2}{N-2}},;;; u>0;;;hbox{ in } mathbb{R}^N, end{equation*} where $Ngeq 5.$ Although there are some existence results of bubbling solutions for pr
In this paper, the finite time extinction of solutions to the fast diffusion system $u_t=mathrm{div}(| abla u|^{p-2} abla u)+v^m$, $v_t=mathrm{div}(| abla v|^{q-2} abla v)+u^n$ is investigated, where $1<p,q<2$, $m,n>0$ and $Omegasubset mathbb{R}^N (N
We consider finite Morse index solutions to semilinear elliptic questions, and we investigate their smoothness. It is well-known that: - For $n=2$, there exist Morse index $1$ solutions whose $L^infty$ norm goes to infinity. - For $n geq 3$, unif