ﻻ يوجد ملخص باللغة العربية
We consider finite Morse index solutions to semilinear elliptic questions, and we investigate their smoothness. It is well-known that: - For $n=2$, there exist Morse index $1$ solutions whose $L^infty$ norm goes to infinity. - For $n geq 3$, uniform boundedness holds in the subcritical case for power-type nonlinearities, while for critical nonlinearities the boundedness of the Morse index does not prevent blow-up in $L^infty$. In this paper, we investigate the case of general supercritical nonlinearities inside convex domains, and we prove an interior a priori $L^infty$ bound for finite Morse index solution in the sharp dimensional range $3leq nleq 9$. As a corollary, we obtain uniform bounds for finite Morse index solutions to the Gelfand problem constructed via the continuity method.
In this paper we prove the following long-standing conjecture: stable solutions to semilinear elliptic equations are bounded (and thus smooth) in dimension $n leq 9$. This result, that was only known to be true for $nleq4$, is optimal: $log(1/|x|^2
This paper extends the theory of regular solutions ($C^1$ in a suitable sense) for a class of semilinear elliptic equations in Hilbert spaces. The notion of regularity is based on the concept of $G$-derivative, which is introduced and discussed. A re
A characterization of a semilinear elliptic partial differential equation (PDE) on a bounded domain in $mathbb{R}^n$ is given in terms of an infinite-dimensional dynamical system. The dynamical system is on the space of boundary data for the PDE. Thi
In this paper, we consider the pointwise boundary Lipschitz regularity of solutions for the semilinear elliptic equations in divergence form mainly under some weaker assumptions on nonhomogeneous term and the boundary. If the domain satisfies C^{1,te
We prove that solution of defocusing semilinear wave equation in $mathbb{R}^{1+3}$ with pure power nonlinearity is uniformly bounded for all $frac{3}{2}<pleq 2$ with sufficiently smooth and localized data. The result relies on the $r$-weighted energy