ترغب بنشر مسار تعليمي؟ اضغط هنا

When should agents explore?

142   0   0.0 ( 0 )
 نشر من قبل Tom Schaul
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Exploration remains a central challenge for reinforcement learning (RL). Virtually all existing methods share the feature of a monolithic behaviour policy that changes only gradually (at best). In contrast, the exploratory behaviours of animals and humans exhibit a rich diversity, namely including forms of switching between modes. This paper presents an initial study of mode-switching, non-monolithic exploration for RL. We investigate different modes to switch between, at what timescales it makes sense to switch, and what signals make for good switching triggers. We also propose practical algorithmic components that make the switching mechanism adaptive and robust, which enables flexibility without an accompanying hyper-parameter-tuning burden. Finally, we report a promising and detailed analysis on Atari, using two-mode exploration and switching at sub-episodic time-scales.

قيم البحث

اقرأ أيضاً

Reinforcement learning (RL) provides a framework for learning goal-directed policies given user-specified rewards. However, since designing rewards often requires substantial engineering effort, we are interested in the problem of learning without re wards, where agents must discover useful behaviors in the absence of task-specific incentives. Intrinsic motivation is a family of unsupervised RL techniques which develop general objectives for an RL agent to optimize that lead to better exploration or the discovery of skills. In this paper, we propose a new unsupervised RL technique based on an adversarial game which pits two policies against each other to compete over the amount of surprise an RL agent experiences. The policies each take turns controlling the agent. The Explore policy maximizes entropy, putting the agent into surprising or unfamiliar situations. Then, the Control policy takes over and seeks to recover from those situations by minimizing entropy. The game harnesses the power of multi-agent competition to drive the agent to seek out increasingly surprising parts of the environment while learning to gain mastery over them. We show empirically that our method leads to the emergence of complex skills by exhibiting clear phase transitions. Furthermore, we show both theoretically (via a latent state space coverage argument) and empirically that our method has the potential to be applied to the exploration of stochastic, partially-observed environments. We show that Adversarial Surprise learns more complex behaviors, and explores more effectively than competitive baselines, outperforming intrinsic motivation methods based on active inference, novelty-seeking (Random Network Distillation (RND)), and multi-agent unsupervised RL (Asymmetric Self-Play (ASP)) in MiniGrid, Atari and VizDoom environments.
Reinforcement learning has enabled agents to solve challenging tasks in unknown environments. However, manually crafting reward functions can be time consuming, expensive, and error prone to human error. Competing objectives have been proposed for ag ents to learn without external supervision, but it has been unclear how well they reflect task rewards or human behavior. To accelerate the development of intrinsic objectives, we retrospectively compute potential objectives on pre-collected datasets of agent behavior, rather than optimizing them online, and compare them by analyzing their correlations. We study input entropy, information gain, and empowerment across seven agents, three Atari games, and the 3D game Minecraft. We find that all three intrinsic objectives correlate more strongly with a human behavior similarity metric than with task reward. Moreover, input entropy and information gain correlate more strongly with human similarity than task reward does, suggesting the use of intrinsic objectives for designing agents that behave similarly to human players.
Interference among concurrent transmissions in a wireless network is a key factor limiting the system performance. One way to alleviate this problem is to manage the radio resources in order to maximize either the average or the worst-case performanc e. However, joint consideration of both metrics is often neglected as they are competing in nature. In this article, a mechanism for radio resource management using multi-agent deep reinforcement learning (RL) is proposed, which strikes the right trade-off between maximizing the average and the $5^{th}$ percentile user throughput. Each transmitter in the network is equipped with a deep RL agent, receiving partial observations from the network (e.g., channel quality, interference level, etc.) and deciding whether to be active or inactive at each scheduling interval for given radio resources, a process referred to as link scheduling. Based on the actions of all agents, the network emits a reward to the agents, indicating how good their joint decisions were. The proposed framework enables the agents to make decisions in a distributed manner, and the reward is designed in such a way that the agents strive to guarantee a minimum performance, leading to a fair resource allocation among all users across the network. Simulation results demonstrate the superiority of our approach compared to decentralized baselines in terms of average and $5^{th}$ percentile user throughput, while achieving performance close to that of a centralized exhaustive search approach. Moreover, the proposed framework is robust to mismatches between training and testing scenarios. In particular, it is shown that an agent trained on a network with low transmitter density maintains its performance and outperforms the baselines when deployed in a network with a higher transmitter density.
Reinforcement learning allows solving complex tasks, however, the learning tends to be task-specific and the sample efficiency remains a challenge. We present Plan2Explore, a self-supervised reinforcement learning agent that tackles both these challe nges through a new approach to self-supervised exploration and fast adaptation to new tasks, which need not be known during exploration. During exploration, unlike prior methods which retrospectively compute the novelty of observations after the agent has already reached them, our agent acts efficiently by leveraging planning to seek out expected future novelty. After exploration, the agent quickly adapts to multiple downstream tasks in a zero or a few-shot manner. We evaluate on challenging control tasks from high-dimensional image inputs. Without any training supervision or task-specific interaction, Plan2Explore outperforms prior self-supervised exploration methods, and in fact, almost matches the performances oracle which has access to rewards. Videos and code at https://ramanans1.github.io/plan2explore/
Exploration is one of the core challenges in reinforcement learning. A common formulation of curiosity-driven exploration uses the difference between the real future and the future predicted by a learned model. However, predicting the future is an in herently difficult task which can be ill-posed in the face of stochasticity. In this paper, we introduce an alternative form of curiosity that rewards novel associations between different senses. Our approach exploits multiple modalities to provide a stronger signal for more efficient exploration. Our method is inspired by the fact that, for humans, both sight and sound play a critical role in exploration. We present results on several Atari environments and Habitat (a photorealistic navigation simulator), showing the benefits of using an audio-visual association model for intrinsically guiding learning agents in the absence of external rewards. For videos and code, see https://vdean.github.io/audio-curiosity.html.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا