ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct thermal infrared vision via nanophotonic detector design

97   0   0.0 ( 0 )
 نشر من قبل Chinmay Khandekar Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Detection of infrared (IR) photons in a room-temperature IR camera is carried out by a two-dimensional array of microbolometer pixels which exhibit temperature-sensitive resistivity. When IR light coming from the far-field is focused onto this array, microbolometer pixels are heated up in proportion to the temperatures of the far-field objects. The resulting resistivity change of each pixel is measured via on-chip electronic readout circuit followed by analog to digital (A/D) conversion, image processing, and presentation of the final IR image on a separate information display screen. In this work, we introduce a new nanophotonic detector as a minimalist alternative to microbolometer such that the final IR image can be presented without using the components required for A/D conversion, image processing and display. In our design, the detector array is illuminated with visible laser light and the reflected light itself carries the IR image which can be directly viewed. We realize and numerically demonstrate this functionality using a resonant waveguide grating structure made of typical materials such as silicon carbide, silicon nitride, and silica for which lithography techniques are well-developed. We clarify the requirements to tackle the issues of fabrication nonuniformities and temperature drifts in the detector array. We envision a potential near-eye display device for IR vision based on timely use of diffractive optical waveguides in augmented reality headsets and tunable visible laser sources. Our work indicates a way to achieve direct thermal IR vision for suitable use cases with lower cost, smaller form factor, and reduced power consumption compared to the existing thermal IR cameras.

قيم البحث

اقرأ أيضاً

A theory is presented to describe the heat-flux radiated in near-field regime by a set of interacting nanoemitters held at different temperatures in vacuum or above a solid surface. We show that this thermal energy can be focused and even amplified i n spots that are much smaller than those obtained with a single thermal source. We also demonstrate the possibility to locally pump heat using specific geometrical configurations. These many body effects pave the way to a multi-tip near-field scanning thermal microscopy which could find broad applications in the fields of nanoscale thermal management, heat-assisted data recording, nanoscale thermal imaging, heat capacity measurements and infrared spectroscopy of nano-objects.
We numerically demonstrate that a planar slab made of magnetic Weyl semimetal (a class of topological materials) can emit high-purity circularly polarized (CP) thermal radiation over a broad mid- and long-wave infrared wavelength range for a signific ant portion of its emission solid angle. This effect fundamentally arises from the strong infrared gyrotropy or nonreciprocity of these materials which primarily depends on the momentum separation between Weyl nodes in the band structure. We clarify the dependence of this effect on the underlying physical parameters and highlight that the spectral bandwidth of CP thermal emission increases with increasing momentum separation between the Weyl nodes. We also demonstrate using recently developed thermal discrete dipole approximation (TDDA) computational method that finite-size bodies of magnetic Weyl semimetals can emit spectrally broadband CP thermal light, albeit over smaller portion of the emission solid angle compared to the planar slabs. Our work identifies unique fundamental and technological prospects of magnetic Weyl semimetals for engineering thermal radiation and designing efficient CP light sources.
164 - Qizhang Li , Haiyu He (1 2021
Hyperbolic metamaterials (HMMs) support propagating waves with arbitrarily large wavevectors over broad spectral ranges, and are uniquely valuable for engineering radiative thermal transport in the near field. Here, by employing a rational design app roach based on the electromagnetic local density of states, we demonstrate the ability of HMMs to substantially rectify radiative heat flow. Our idea is to establish a forward-biased scenario where the two HMM-based terminals of a thermal diode feature overlapped hyperbolic bands which result in a large heat current, and suppress the reverse heat flow by creating spectrally mismatched density of states as the temperature bias is flipped. As an example, we present a few high-performance thermal diodes by pairing HMMs made of polar dielectrics and metal-to-insulator transition (MIT) materials in the form of periodic nanowire arrays, and considering three representative kinds of substrates. Upon optimization, we theoretically achieve a rectification ratio of 324 at a 100 nm gap, which remains greater than 148 for larger gap sizes up to 1 um over a wide temperature range. The maximum rectification represents an almost 1000-fold increase compared to a bulk diode using the same materials, and is twice that of state-of-the-art designs. Our work highlights the potential of HMMs for rectifying radiative heat flow, and may find applications in advanced thermal management and energy conversion systems.
Phonon polaritons (PhPs), the collective phonon oscillations with hybridized electromagnetic fields, concentrate optical fields in the mid-infrared frequency range that matches the vibrational modes of molecules. The utilization of PhPs holds the pro mise for chemical sensing tools and polariton-enhanced nanospectroscopy. However, investigations and innovations on PhPs in the aqueous phase remains stagnant, because of the lack of in situ mid-infrared nano-imaging methods in water. Strong infrared absorption from water prohibits optical delivery and detection in the mid-infrared for scattering-type near-field microscopy. Here, we present our solution: the detection of photothermal responses caused by the excitation of PhPs by liquid phase peak force infrared (LiPFIR) microscopy. Characteristic interference fringes of PhPs in 10B isotope-enriched h-BN were measured in the aqueous phase and their dispersion relationship extracted. LiPFIR enables the measurement of mid-infrared PhPs in the fluid phase, opening possibilities, and facilitating the development of mid-IR phonon polaritonics in water.
Nearly all thermal radiation phenomena involving materials with linear response can be accurately described via semi-classical theories of light. Here, we go beyond these traditional paradigms to study a nonlinear system which, as we show, necessaril y requires quantum theory of damping. Specifically, we analyze thermal radiation from a resonant system containing a $chi^{(2)}$ nonlinear medium and supporting resonances at frequencies $omega_1$ and $omega_2approx 2omega_1$, where both resonators are driven only by intrinsic thermal fluctuations. Within our quantum formalism, we reveal new possibilities for shaping the thermal radiation. We show that the resonantly enhanced nonlinear interaction allows frequency-selective enhancement of thermal emission through upconversion, surpassing the well-known blackbody limits associated with linear media. Surprisingly, we also find that the emitted thermal light exhibits non-trivial statistics ($g^{(2)}(0) eq 2$) and biphoton intensity correlations (at two distinct frequencies). We highlight that these features can be observed in the near future by heating a properly designed nonlinear system, without the need for any external signal. Our work motivates new interdisciplinary inquiries combining the fields of nonlinear photonics, quantum optics and thermal science.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا