ﻻ يوجد ملخص باللغة العربية
Most realistic calculations of moderately correlated materials begin with a ground-state density functional theory (DFT) calculation. While Kohn-Sham DFT is used in about 40,000 scientific papers each year, the fundamental underpinnings are not widely appreciated. In this chapter, we analyze the inherent characteristics of DFT in their simplest form, using the asymmetric Hubbard dimer as an illustrative model. We begin by working through the core tenets of DFT, explaining what the exact ground-state density functional yields and does not yield. Given the relative simplicity of the system, almost all properties of the exact exchange-correlation functional are readily visualized and plotted. Key concepts include the Kohn-Sham scheme, the behavior of the XC potential as correlations become very strong, the derivative discontinuity and the difference between KS gaps and true charge gaps, and how to extract optical excitations using time-dependent DFT. By the end of this text and accompanying exercises, the reader will improve their ability to both explain and visualize the concepts of DFT, as well as better understand where others may go wrong.
We present in full detail a newly developed formalism enabling density functional perturbation theory (DFPT) calculations from a DFT+$U$ ground state. The implementation includes ultrasoft pseudopotentials and is valid for both insulating and metalli
We propose a lattice density-functional theory for {it ab initio} quantum chemistry or physics as a route to an efficient approach that approximates the full configuration interaction energy and orbital occupations for molecules with strongly-correla
Quantum embedding based on the (one-electron reduced) density matrix is revisited by means of the unitary Householder transformation. While being exact and equivalent to (but formally simpler than) density matrix embedding theory (DMET) in the non-in
The solution of complex many-body lattice models can often be found by defining an energy functional of the relevant density of the problem. For instance, in the case of the Hubbard model the spin-resolved site occupation is enough to describe the sy
A curious behavior of electron correlation energy is explored. Namely, the correlation energy is the energy that tends to drive the system toward that of the uniform electron gas. As such, the energy assumes its maximum value when a gradient of densi