ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding electron correlation energy through density functional theory

137   0   0.0 ( 0 )
 نشر من قبل Teepanis Chachiyo
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A curious behavior of electron correlation energy is explored. Namely, the correlation energy is the energy that tends to drive the system toward that of the uniform electron gas. As such, the energy assumes its maximum value when a gradient of density is zero. As the gradient increases, the energy is diminished by a gradient suppressing factor, designed to attenuate the energy from its maximum value similar to the shape of a bell curve. Based on this behavior, we constructed a very simple mathematical formula that predicted the correlation energy of atoms and molecules. Combined with our proposed exchange energy functional, we calculated the correlation energies, the total energies, and the ionization energies of test atoms and molecules; and despite the unique simplicities, the functionals accuracies are in the top tier performance, competitive to the B3LYP, BLYP, PBE, TPSS, and M11. Therefore, we propose that, as guided by the simplicities and supported by the accuracies, the correlation energy is the energy that locally tends to drive the system toward the uniform electron gas.

قيم البحث

اقرأ أيضاً

Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of n ew classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs. This code hosts the development of joint density-functional theory (JDFT) that combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.
Time-dependent density-functional theory (TDDFT) is a computationally efficient first-principles approach for calculating optical spectra in insulators and semiconductors, including excitonic effects. We show how exciton wave functions can be obtaine d from TDDFT via the Kohn-Sham transition density matrix, both in the frequency-dependent linear-response regime and in real-time propagation. The method is illustrated using one-dimensional model solids. In particular, we show that our approach provides insight into the formation and dissociation of excitons in real time. This opens the door to time-resolved studies of exciton dynamics in materials by means of real-time TDDFT.
We propose a method to decompose the total energy of a supercell containing defects into contributions of individual atoms, using the energy density formalism within density functional theory. The spatial energy density is unique up to a gauge transf ormation, and we show that unique atomic energies can be calculated by integrating over Bader and charge-neutral volumes for each atom. Numerically, we implement the energy density method in the framework of the Vienna ab initio simulation package (VASP) for both norm-conserving and ultrasoft pseudopotentials and the projector augmented wave method, and use a weighted integration algorithm to integrate the volumes. The surface energies and point defect energies can be calculated by integrating the energy density over the surface region and the defect region, respectively. We compute energies for several surfaces and defects: the (110) surface energy of GaAs, the mono-vacancy formation energies of Si, the (100) surface energy of Au, and the interstitial formation energy of O in the hexagonal close-packed Ti crystal. The surface and defect energies calculated using our method agree with size-converged calculations of the difference between the total energies of the system with and without the defect. Moreover, the convergence of the defect energies with size can be found from a single calculation.
In spin-density-functional theory for noncollinear magnetic materials, the Kohn-Sham system features exchange-correlation (xc) scalar potentials and magnetic fields. The significance of the xc magnetic fields is not very well explored; in particular, they can give rise to local torques on the magnetization, which are absent in standard local and semilocal approximations. We obtain exact benchmark solutions for two electrons on four-site extended Hubbard lattices over a wide range of interaction strengths, and compare exact xc potentials and magnetic fields with approximations obtained from orbital-dependent xc functionals. The xc magnetic fields turn out to play an increasingly important role as systems becomes more and more correlated and the electrons begin to localize; the effects of the xc torques, however, remain relatively minor. The approximate xc functionals perform overall quite well, but tend to favor symmetry-broken solutions for strong interactions.
245 - Fabien Tran , Peter Blaha 2018
An alternative type of approximation for the exchange and correlation functional in density functional theory is proposed. This approximation depends on a variable $u$ that is able to detect inhomogeneities in the electron density $rho$ without using derivatives of $rho$. Instead, $u$ depends on the orbital energies which can also be used to measure how a system differs from the homogeneous electron gas. Starting from the functional of Perdew, Burke, and Ernzerhof (PBE) [Phys. Rev. Lett. 77, 3865 (1996)], a functional depending on $u$ is constructed. Tests on the lattice constant, bulk modulus, and cohesive energy of solids show that this $u$-dependent PBE-like functional is on average as accurate as the original PBE or its solid-state version PBEsol. Since $u$ carries more nonlocality than the reduced density gradient $s$ used in functionals of the generalized gradient approximation (GGA) like PBE and $alpha$ used in meta-GGAs, it will be certainly useful for the future development of more accurate exchange-correlation functionals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا