ﻻ يوجد ملخص باللغة العربية
Deep neural networks (DNN) have shown superior performance in a variety of tasks. As they rapidly evolve, their escalating computation and memory demands make it challenging to deploy them on resource-constrained edge devices. Though extensive efficient accelerator designs, from traditional electronics to emerging photonics, have been successfully demonstrated, they are still bottlenecked by expensive memory accesses due to tremendous gaps between the bandwidth/power/latency of electrical memory and computing cores. Previous solutions fail to fully-leverage the ultra-fast computational speed of emerging DNN accelerators to break through the critical memory bound. In this work, we propose a general and unified framework to trade expensive memory transactions with ultra-fast on-chip computations, directly translating to performance improvement. We are the first to jointly explore the intrinsic correlations and bit-level redundancy within DNN kernels and propose a multi-level in situ generation mechanism with mixed-precision bases to achieve on-the-fly recovery of high-resolution parameters with minimum hardware overhead. Extensive experiments demonstrate that our proposed joint method can boost the memory efficiency by 10-20x with comparable accuracy over four state-of-the-art designs, when benchmarked on ResNet-18/DenseNet-121/MobileNetV2/V3 with various tasks.
Many recently proposed methods for Neural Architecture Search (NAS) can be formulated as bilevel optimization. For efficient implementation, its solution requires approximations of second-order methods. In this paper, we demonstrate that gradient err
Convex relaxations have emerged as a promising approach for verifying desirable properties of neural networks like robustness to adversarial perturbations. Widely used Linear Programming (LP) relaxations only work well when networks are trained to fa
The advent of deep learning has considerably accelerated machine learning development. The deployment of deep neural networks at the edge is however limited by their high memory and energy consumption requirements. With new memory technology availabl
Analog electronic and optical computing exhibit tremendous advantages over digital computing for accelerating deep learning when operations are executed at low precision. In this work, we derive a relationship between analog precision, which is limit
Spiking Neural Network (SNN) has been recognized as one of the next generation of neural networks. Conventionally, SNN can be converted from a pre-trained ANN by only replacing the ReLU activation to spike activation while keeping the parameters inta