ترغب بنشر مسار تعليمي؟ اضغط هنا

Model-based Decision Making with Imagination for Autonomous Parking

97   0   0.0 ( 0 )
 نشر من قبل Ziyue Feng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Autonomous parking technology is a key concept within autonomous driving research. This paper will propose an imaginative autonomous parking algorithm to solve issues concerned with parking. The proposed algorithm consists of three parts: an imaginative model for anticipating results before parking, an improved rapid-exploring random tree (RRT) for planning a feasible trajectory from a given start point to a parking lot, and a path smoothing module for optimizing the efficiency of parking tasks. Our algorithm is based on a real kinematic vehicle model; which makes it more suitable for algorithm application on real autonomous cars. Furthermore, due to the introduction of the imagination mechanism, the processing speed of our algorithm is ten times faster than that of traditional methods, permitting the realization of real-time planning simultaneously. In order to evaluate the algorithms effectiveness, we have compared our algorithm with traditional RRT, within three different parking scenarios. Ultimately, results show that our algorithm is more stable than traditional RRT and performs better in terms of efficiency and quality.

قيم البحث

اقرأ أيضاً

88 - Qi Liu , Xueyuan Li , Shihua Yuan 2021
Autonomous vehicles have a great potential in the application of both civil and military fields, and have become the focus of research with the rapid development of science and economy. This article proposes a brief review on learning-based decision- making technology for autonomous vehicles since it is significant for safer and efficient performance of autonomous vehicles. Firstly, the basic outline of decision-making technology is provided. Secondly, related works about learning-based decision-making methods for autonomous vehicles are mainly reviewed with the comparison to classical decision-making methods. In addition, applications of decision-making methods in existing autonomous vehicles are summarized. Finally, promising research topics in the future study of decision-making technology for autonomous vehicles are prospected.
Aerial cinematography is revolutionizing industries that require live and dynamic camera viewpoints such as entertainment, sports, and security. However, safely piloting a drone while filming a moving target in the presence of obstacles is immensely taxing, often requiring multiple expert human operators. Hence, there is demand for an autonomous cinematographer that can reason about both geometry and scene context in real-time. Existing approaches do not address all aspects of this problem; they either require high-precision motion-capture systems or GPS tags to localize targets, rely on prior maps of the environment, plan for short time horizons, or only follow artistic guidelines specified before flight. In this work, we address the problem in its entirety and propose a complete system for real-time aerial cinematography that for the first time combines: (1) vision-based target estimation; (2) 3D signed-distance mapping for occlusion estimation; (3) efficient trajectory optimization for long time-horizon camera motion; and (4) learning-based artistic shot selection. We extensively evaluate our system both in simulation and in field experiments by filming dynamic targets moving through unstructured environments. Our results indicate that our system can operate reliably in the real world without restrictive assumptions. We also provide in-depth analysis and discussions for each module, with the hope that our design tradeoffs can generalize to other related applications. Videos of the complete system can be found at: https://youtu.be/ookhHnqmlaU.
Discretionary lane change (DLC) is a basic but complex maneuver in driving, which aims at reaching a faster speed or better driving conditions, e.g., further line of sight or better ride quality. Although many DLC decision-making models have been stu died in traffic engineering and autonomous driving, the impact of human factors, which is an integral part of current and future traffic flow, is largely ignored in the existing literature. In autonomous driving, the ignorance of human factors of surrounding vehicles will lead to poor interaction between the ego vehicle and the surrounding vehicles, thus, a high risk of accidents. The human factors are also a crucial part to simulate a human-like traffic flow in the traffic engineering area. In this paper, we integrate the human factors that are represented by driving styles to design a new DLC decision-making model. Specifically, our proposed model takes not only the contextual traffic information but also the driving styles of surrounding vehicles into consideration and makes lane-change/keep decisions. Moreover, the model can imitate human drivers decision-making maneuvers to the greatest extent by learning the driving style of the ego vehicle. Our evaluation results show that the proposed model almost follows the human decision-making maneuvers, which can achieve 98.66% prediction accuracy with respect to human drivers decisions against the ground truth. Besides, the lane-change impact analysis results demonstrate that our model even performs better than human drivers in terms of improving the safety and speed of traffic.
Humans make daily routine decisions based on their internal states in intricate interaction scenarios. This paper presents a probabilistically reconstructive learning approach to identify the internal states of multi-vehicle sequential interactions w hen merging at highway on-ramps. We treated the merging tasks sequential decision as a dynamic, stochastic process and then integrated the internal states into an HMM-GMR model, a probabilistic combination of an extended Gaussian mixture regression (GMR) and hidden Markov models (HMM). We also developed a variant expectation-maximum (EM) algorithm to estimate the model parameters and verified it based on a real-world data set. Experiment results reveal that three interpretable internal states can semantically describe the interactive merge procedure at highway on-ramps. This finding provides a basis to develop an efficient model-based decision-making algorithm for autonomous vehicles (AVs) in a partially observable environment.
Value-based methods for reinforcement learning lack generally applicable ways to derive behavior from a value function. Many approaches involve approximate value iteration (e.g., $Q$-learning), and acting greedily with respect to the estimates with a n arbitrary degree of entropy to ensure that the state-space is sufficiently explored. Behavior based on explicit greedification assumes that the values reflect those of textit{some} policy, over which the greedy policy will be an improvement. However, value-iteration can produce value functions that do not correspond to textit{any} policy. This is especially relevant in the function-approximation regime, when the true value function cant be perfectly represented. In this work, we explore the use of textit{inverse policy evaluation}, the process of solving for a likely policy given a value function, for deriving behavior from a value function. We provide theoretical and empirical results to show that inverse policy evaluation, combined with an approximate value iteration algorithm, is a feasible method for value-based control.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا