ترغب بنشر مسار تعليمي؟ اضغط هنا

Low dephasing and robust micromagnet designs for silicon spin qubits

152   0   0.0 ( 0 )
 نشر من قبل Ruoyu Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using micromagnets to enable electron spin manipulation in silicon qubits has emerged as a very popular method, enabling single-qubit gate fidelities larger than 99:9%. However, these micromagnets also apply stray magnetic field gradients onto the qubits, making the spin states susceptible to electric field noise and limiting their coherence times. We describe here a magnet design that minimizes qubit dephasing, while allowing for fast qubit control and addressability. Specifically, we design and optimize magnet dimensions and position relative to the quantum dots, minimizing dephasing from magnetic field gradients. The micromagnet-induced dephasing rates with this design are up to 3-orders of magnitude lower than state-of-the-art implementations, allowing for long coherence times. This design is robust against fabrication errors, and can be combined with a wide variety of silicon qubit device geometries, thereby allowing exploration of coherence limiting factors and novel upscaling approaches.



قيم البحث

اقرأ أيضاً

The nuclear spin state of a phosphorus donor ($^{31}$P) in isotopically enriched silicon-28 is an excellent host to store quantum information in the solid state. The spins insensitivity to electric fields yields a solid-state qubit with record cohere nce times, but also renders coupling to other quantum systems very challenging. Here, we describe how to generate a strong electric dipole ($>100$ Debye) at microwave frequencies for the nuclear spin. This is achieved by applying a magnetic drive to the spin of the donor-bound electron, while simultaneously controlling its charge state with electric fields. Under certain conditions, the microwave magnetic drive also renders the nuclear spin resonance frequency and electric dipole strongly insensitive to electrical noise, yielding long ($>1$ ms) dephasing times and robust gate operations. The nuclear spin could then be strongly coupled to microwave resonators, with a vacuum Rabi splitting of order 1 MHz, or to other nuclear spins, nearly half a micrometer apart, via strong electric dipole-dipole interaction. This work brings the $^{31}$P nuclear qubit into the realm of hybrid quantum systems and opens up new avenues in quantum information processing.
Quantum computation requires high-fidelity single-qubit and two-qubit gates on a scalable platform. Silicon spin qubits are a promising platform toward realization of this goal. In this paper we show how to perform single-qubit and CZ gates in a line ar chain of three spin qubits with always-on exchange coupling, which is relevant for certain dot- and donor-based silicon devices. We also show how to make the CZ gate robust against both charge noise and pulse length error using a two-tone pulse shaping method. The robust pulse maintains a fidelity of 99.99% at 3.5% fluctuations in exchange or pulse amplitude, which is an improvement over the uncorrected pulses where this fidelity can only be maintained for fluctuations in exchange up to 2% or up to 0.2% in amplitude.
Quantum computers have the potential to efficiently solve problems in logistics, drug and material design, finance, and cybersecurity. However, millions of qubits will be necessary for correcting inevitable errors in quantum operations. In this scena rio, electron spins in gate-defined silicon quantum dots are strong contenders for encoding qubits, leveraging the microelectronics industry know-how for fabricating densely populated chips with nanoscale electrodes. The sophisticated material combinations used in commercially manufactured transistors, however, will have a very different impact on the fragile qubits. We review here some key properties of the materials that have a direct impact on qubit performance and variability.
Solid-state experimental realizations of Majorana bound states are based on materials with strong intrinsic spin-orbit interactions. In this paper, we explore an alternative approach where spin-orbit coupling is induced artificially through a nonunif orm magnetic field that originates from an array of micromagnets. Using a recently developed optimization algorithm, we find suitable magnet geometries for the emergence of topological superconductivity in wires without intrinsic spin-orbit coupling. We confirm the robustness of Majorana bound states against disorder and periodic potentials whose amplitudes do not exceed the Zeeman energy. Furthermore, we identify low g-factor materials commonly used in mesoscopic physics experiments as viable candidates for Majorana devices.
95 - R. Li , L. Petit , D.P. Franke 2017
The spin states of single electrons in gate-defined quantum dots satisfy crucial requirements for a practical quantum computer. These include extremely long coherence times, high-fidelity quantum operation, and the ability to shuttle electrons as a m echanism for on-chip flying qubits. In order to increase the number of qubits to the thousands or millions of qubits needed for practical quantum information we present an architecture based on shared control and a scalable number of lines. Crucially, the control lines define the qubit grid, such that no local components are required. Our design enables qubit coupling beyond nearest neighbors, providing prospects for non-planar quantum error correction protocols. Fabrication is based on a three-layer design to define qubit and tunnel barrier gates. We show that a double stripline on top of the structure can drive high-fidelity single-qubit rotations. Qubit addressability and readout are enabled by self-aligned inhomogeneous magnetic fields induced by direct currents through superconducting gates. Qubit coupling is based on the exchange interaction, and we show that parallel two-qubit gates can be performed at the detuning noise insensitive point. While the architecture requires a high level of uniformity in the materials and critical dimensions to enable shared control, it stands out for its simplicity and provides prospects for large-scale quantum computation in the near future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا