ﻻ يوجد ملخص باللغة العربية
Solid-state experimental realizations of Majorana bound states are based on materials with strong intrinsic spin-orbit interactions. In this paper, we explore an alternative approach where spin-orbit coupling is induced artificially through a nonuniform magnetic field that originates from an array of micromagnets. Using a recently developed optimization algorithm, we find suitable magnet geometries for the emergence of topological superconductivity in wires without intrinsic spin-orbit coupling. We confirm the robustness of Majorana bound states against disorder and periodic potentials whose amplitudes do not exceed the Zeeman energy. Furthermore, we identify low g-factor materials commonly used in mesoscopic physics experiments as viable candidates for Majorana devices.
Topological excitations, such as Majorana zero modes, are a promising route for encoding quantum information. Topologically protected gates of Majorana qubits, based on their braiding, will require some form of network. Here, we propose to build such
Using micromagnets to enable electron spin manipulation in silicon qubits has emerged as a very popular method, enabling single-qubit gate fidelities larger than 99:9%. However, these micromagnets also apply stray magnetic field gradients onto the qu
We propose an alternative route to engineer Majorana zero modes (MZMs), which relies on inducing shift or spin vortex defects in magnetic textures which microscopically coexist or are in proximity to a superconductor. The present idea applies to a va
In condensed matter physics, non-Abelian statistics for Majorana zero modes (or Majorana Fermions) is very important, really exotic, and completely robust. The race for searching Majorana zero modes and verifying the corresponding non-Abelian statist
Energy gaps have been measured for the ferromagnetic quantum Hall effect states at v=1 and 3 in GaAs/GaAlAs heterojunctions as a function of Zeeman energy, which is reduced to zero by applying hydrostatic pressures of up to 20kbar. At large Zeeman en