ﻻ يوجد ملخص باللغة العربية
A laser ablation ion source (LAS) is a powerful tool by which diverse species of ions can be produced for mass spectrometer calibration, or surface study applications. It is necessary to frequently shift the laser position on the target to selectively ablate materials in a controlled manner, and to mitigate degradation of the target surface caused by ablation. An alternative to mounting the target onto a rotation wheel or $x-y$ translation stage, is to shift the laser position with a final reflection from a motorized kinematic mirror mount. Such a system has been developed, assembled and characterized with a two axis motorized mirror and various metal targets. In the system presented here, ions are ablated from the target surface and guided by a 90 degree quadrupole bender to a Faraday cup where the ion current is measured. Spatially resolved scans of the target are produced by actuating the mirror motors, thus moving the laser spot across the target, and performing synchronous measurements of the ion current to construct 2D images of a target surface which can be up to 50~mm in diameter. The spatial resolution of the system has been measured by scanning the interfaces between metals such as steel and niobium, where it was demonstrated that the LAS can selectively ablate an area of diameter $approx$50 $mu$m. This work informs the development of subsequent LAS systems, that are intended to serve as multi-element ion sources for commercial and custom-built time-of-flight mass spectrometers, or to selectively study surface specific regions of samples.
An off-line ion source station has been commissioned at the IGISOL (Ion Guide Isotope Separator On-Line) facility. It offers the infrastructure needed to produce stable ion beams from three off-line ion sources in parallel with the radioactive ion be
Hot cavity resonant ionization laser ion sources (RILIS) provide a multitude of radioactive ion beams with high ionization efficiency and element selective ionization. However, in hot cavity RILIS there still remains isobaric contaminations in the ex
An open-ring ion trap, also referred to as transparent trap was initially built up to perform $beta$-$ u$ correlation experiments with radioactive ions. This trap geometry is also well suited to perform experiments with laser-cooled ions, serving for
Deep Ion Beam Lithography (DIBL) has been used for the direct writing of buried graphitic regions in monocrystalline diamond with micrometric resolution. Aiming at the development and the characterization of a fully ion-beam-micromachined solid state
We demonstrate loading by laser ablation of $^{88}$Sr$^+$ ions into a mm-scale surface-electrode ion trap. The laser used for ablation is a pulsed, frequency-tripled Nd:YAG with pulse energies of 1-10 mJ and durations of 3-5 ns. An additional laser i