ﻻ يوجد ملخص باللغة العربية
Deep Ion Beam Lithography (DIBL) has been used for the direct writing of buried graphitic regions in monocrystalline diamond with micrometric resolution. Aiming at the development and the characterization of a fully ion-beam-micromachined solid state ionization chamber, a device with interdigitated electrodes was fabricated by using a 1.8 MeV He+ ion microbeam scanning on a homoepitaxial, grown by chemical vapour deposition (CVD). In order to evaluate the ionizing-radiation-detection performance of the device, charge collection efficiency (CCE) maps were extracted from Ion Beam Induced Charge (IBIC) measurements carried out by probing different arrangements of buried microelectrodes. The analysis of the CCE maps allowed for an exhaustive evaluation of the detector features, in particular the individuation of the different role played by electrons and holes in the formation of the induced charge pulses. Finally, a comparison of the performances of the detector with buried graphitic electrodes with those relevant to conventional metallic surface electrodes evidenced the formation of a dead layer overlying the buried electrodes as a result of the fabrication process.
This paper reports on the fabrication and characterization of a high purity monocrystalline diamond detector with buried electrodes realized by the selective damage induced by a focused 6 MeV carbon ion beam scanned over a pattern defined at the micr
The detection of quantal exocytic events from neurons and neuroendocrine cells is a challenging task in neuroscience. One of the most promising platforms for the development of a new generation of biosensors is diamond, due to its biocompatibility, t
In order to evaluate the charge collection efficiency (CCE) profile of single-crystal diamond devices based on a p type/intrinsic/metal configuration, a lateral Ion Beam Induced Charge (IBIC) analysis was performed over their cleaved cross sections u
Diamond has been developed as a material for the detection of charged particles by ionization. Its radiation hardness makes it an attractive material for detectors operated in a harsh radiation environment e.g. close to a particle beam as is the case
The acronym IBIC (Ion Beam Induced Charge) was coined in early 1990s to indicate a scanning microscopy technique which uses MeV ion beams as probes to image the basic electronic properties of semiconductor materials and devices. Since then, IBIC has