ترغب بنشر مسار تعليمي؟ اضغط هنا

The Polstar High Resolution Spectropolarimetry MIDEX Mission

442   0   0.0 ( 0 )
 نشر من قبل Paul Scowen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Polstar mission will provide for a space-borne 60cm telescope operating at UV wavelengths with spectropolarimetric capability capturing all four Stokes parameters (intensity, two linear polarization components, and circular polarization). Polstars capabilities are designed to meet its goal of determining how circumstellar gas flows alter massive stars evolution, and finding the consequences for the stellar remnant population and the stirring and enrichment of the interstellar medium, by addressing four key science objectives. In addition, Polstar will determine drivers for the alignment of the smallest interstellar grains, and probe the dust, magnetic fields, and environments in the hot diffuse interstellar medium, including for the first time a direct measurement of the polarized and energized properties of intergalactic dust. Polstar will also characterize processes that lead to the assembly of exoplanetary systems and that affect exoplanetary atmospheres and habitability. Science driven design requirements include: access to ultraviolet bands: where hot massive stars are brightest and circumstellar opacity is highest; high spectral resolution: accessing diagnostics of circumstellar gas flows and stellar composition in the far-UV at 122-200nm, including the NV, SiIV, and CIV resonance doublets and other transitions such as NIV, AlIII, HeII, and CIII; polarimetry: accessing diagnostics of circumstellar magnetic field shape and strength when combined with high FUV spectral resolution and diagnostics of stellar rotation and distribution of circumstellar gas when combined with low near-UV spectral resolution; sufficient signal-to-noise ratios: ~1000 for spectropolarimetric precisions of 0.1% per exposure; ~100 for detailed spectroscopic studies; ~10 for exploring dimmer sources; and cadence: ranging from 1-10 minutes for most wind variability studies.



قيم البحث

اقرأ أيضاً

Context. Remote sensing of weak and small-scale solar magnetic fields is of utmost relevance for a number of important open questions in solar physics. This requires the acquisition of spectropolarimetric data with high spatial resolution (0.1 arcsec ) and low noise (1e-3 to 1e-5 of the continuum intensity). The main limitations to obtain these measurements from the ground, are the degradation of the image resolution produced by atmospheric seeing and the seeing-induced crosstalk (SIC). Aims. We introduce the prototype of the Fast Solar Polarimeter (FSP), a new ground-based, high-cadence polarimeter that tackles the above-mentioned limitations by producing data that are optimally suited for the application of post-facto image restoration, and by operating at a modulation frequency of 100 Hz to reduce SIC. Results. The pnCCD camera reaches 400 fps while keeping a high duty cycle (98.6 %) and very low noise (4.94 erms). The modulator is optimized to have high (> 80%) total polarimetric efficiency in the visible spectral range. This allows FSP to acquire 100 photon-noise-limited, full-Stokes measurements per second. We found that the seeing induced signals present in narrow-band, non-modulated, quiet-sun measurements are (a) lower than the noise (7e-5) after integrating 7.66 min, (b) lower than the noise (2.3e-4) after integrating 1.16 min and (c) slightly above the noise (4e-3) after restoring case (b) by means of a multi-object multi-frame blind deconvolution. In addition, we demonstrate that by using only narrow-band images (with low SNR of 13.9) of an active region, we can obtain one complete set of high-quality restored measurements about every 2 s.
437 - D.M. Harrington , J.R. Kuhn 2010
Stellar spectropolarimetry is a relatively new remote sensing tool for exploring stellar atmospheres and circumstellar environments. We present the results of our HiVIS survey and a multi-wavelength ESPaDOnS follow-up campaign showing detectable line ar polarization signatures in many lines for most obscured stars. This survey shows polarization at and below 0.1% across many lines are common in stars with often much larger H-alpha signatures. These smaller signatures are near the limit of typical systematic errors in most night-time spectropolarimeters. In an effort to increase our precision and efficiency for detecting small signals we designed and implemented the new HiVIS bi-directionally clocked detector synchronized with the new liquid-crystal polarimeter package. We can now record multiple independent polarized spectra in a single exposure on identical pixels and have demonstrated 10^-4 relative polarimetric precision. The new detector allows for the movement of charge on the device to be synchronized with phase changes in the liquid-crystal variable retarders at rates of >5Hz. It also allows for more efficient observing on bright targets by effectively increasing the pixel well depth. With the new detector, low and high resolution modes and polarization calibrations for the instrument and telescope, we substantially reduce limitations to the precision and accuracy of this new spectropolarimetric tool.
The MIRAX X-ray observatory, the first Brazilian-led astrophysics space mission, is designed to perform an unprecedented wide-field, wide-band hard X-ray (5-200 keV) survey of Galactic X-ray transient sources. In the current configuration, MIRAX will carry a set of four coded-mask telescopes with high spatial resolution Cadmium Zinc Telluride (CZT) detector planes, each one consisting of an array of 64 closely tiled CZT pixelated detectors. Taken together, the four telescopes will have a total detection area of 959 cm^2, a large field of view (60x60 degrees FWHM), high angular resolution for this energy range (6 arcmin) and very good spectral resolution (~2 keV @ 60 keV). A stratospheric balloon-borne prototype of one of the MIRAX telescopes has been developed, tested and flown by the Harvard-Smithsonian Center for Astrophysics (CfA) as part of the ProtoEXIST program. In this paper we show results of validation and calibration tests with individual CZT detectors of the ProtoEXIST second generation experiment (P2). Each one of 64 detector units of the P2 detector plane consists of an ASIC, developed by Caltech for the NuSTAR telescope, hybridized to a CZT crystal with 0.6 mm pixel size. The performance of each detector was evaluated using radioactive sources in the laboratory. The calibration results show that the P2 detectors have average energy resolution of ~2.1 keV @ 60 keV and ~2.3 keV @ 122 keV. P2 was also successfully tested on near-space environment on a balloon flight, demonstrating the detector unit readiness for integration on a space mission telescope, as well as satisfying all MIRAX mission requirements.
Current burning issues in stellar physics, for both hot and cool stars, concern their magnetism. In hot stars, stable magnetic fields of fossil origin impact their stellar structure and circumstellar environment, with a likely major role in stellar e volution. However, this role is complex and thus poorly understood as of today. It needs to be quantified with high-resolution UV spectropolarimetric measurements. In cool stars, UV spectropolarimetry would provide access to the structure and magnetic field of the very dynamic upper stellar atmosphere, providing key data for new progress to be made on the role of magnetic fields in heating the upper atmospheres, launching stellar winds, and more generally in the interaction of cool stars with their environment (circumstellar disk, planets) along their whole evolution.
Current burning issues in stellar physics, for both hot and cool stars, concern their magnetism. In hot stars, stable magnetic fields of fossil origin impact their stellar structure and circumstellar environment, with a likely major role in stellar e volution. However, this role is complex and thus poorly understood as of today. It needs to be quantified with high-resolution UV spectropolarimetric measurements. In cool stars, UV spectropolarimetry would provide access to the structure and magnetic field of the very dynamic upper stellar atmosphere, providing key data for new progress to be made on the role of magnetic fields in heating the upper atmospheres, launching stellar winds, and more generally in the interaction of cool stars with their environment (circumstellar disk, planets) along their whole evolution. UV spectropolarimetry is proposed on missions of various sizes and scopes, from POLLUX on the 15-m telescope LUVOIR to the Arago M-size mission dedicated to UV spectropolarimetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا