ترغب بنشر مسار تعليمي؟ اضغط هنا

A multiple time renewal equation for neural assemblies with elapsed time model

112   0   0.0 ( 0 )
 نشر من قبل Nicolas Torres
 تاريخ النشر 2021
  مجال البحث علم الأحياء
والبحث باللغة English
 تأليف Nicolas Torres




اسأل ChatGPT حول البحث

We introduce and study an extension of the classical elapsed time equation in the context of neuron populations that are described by the elapsed time since the last discharge, i.e., the refractory period. In this extension we incorporate the elapsed since the penultimate discharge and we obtain a more complex system of integro-differential equations. For this new system we prove convergence to stationary state by means of Doeblins theory in the case of weak non-linearities in an appropriate functional setting, inspired by the case of the classical elapsed time equation. Moreover, we present some numerical simulations to observe how different firing rates can give different types of behaviors and to contrast them with theoretical results of both classical and extended models.

قيم البحث

اقرأ أيضاً

The spike trains are the main components of the information processing in the brain. To model spike trains several point processes have been investigated in the literature. And more macroscopic approaches have also been studied, using partial differe ntial equation models. The main aim of the present article is to build a bridge between several point processes models (Poisson, Wold, Hawkes) that have been proved to statistically fit real spike trains data and age-structured partial differential equations as introduced by Pakdaman, Perthame and Salort.
Neural network dynamics emerge from the interaction of spiking cells. One way to formulate the problem is through a theoretical framework inspired by ideas coming from statistical physics, the so-called mean-field theory. In this document, we investi gate different issues related to the mean-field description of an excitatory network made up of leaky integrate-and-fire neurons. The description is written in the form a nonlinear partial differential equation which is known to blow up in finite time when the network is strongly connected. We prove that in a moderate coupling regime the equation is globally well-posed in the space of measures, and that there exist stationary solutions. In the case of weak connectivity we also demonstrate the uniqueness of the steady state and its global exponential stability. The method to show those mathematical results relies on a contraction argument of Doeblins type in the linear case, which corresponds to a population of non-interacting units.
We investigate the statistics of the first detected passage time of a quantum walk. The postulates of quantum theory, in particular the collapse of the wave function upon measurement, reveal an intimate connection between the wave function of a proce ss free of measurements, i.e. the solution of the Schrodinger equation, and the statistics of first detection events on a site. For stroboscopic measurements a quantum renewal equation yields basic properties of quantum walks. For example, for a tight binding model on a ring we discover critical sampling times, diverging quantities such as the mean time for first detection, and an optimal detection rate. For a quantum walk on an infinite line the probability of first detection decays like $(mbox{time})^{-3}$ with a superimposed oscillation, critical behavior for a specific choice of sampling time, and vanishing amplitude when the sampling time approaches zero due to the quantum Zeno effect.
We consider the nonlinear Schrodinger equation [ u_t = i Delta u + | u |^alpha u quad mbox{on ${mathbb R}^N $, $alpha>0$,} ] for $H^1$-subcritical or critical nonlinearities: $(N-2) alpha le 4$. Under the additional technical assumptions $alphageq 2$ (and thus $Nleq 4$), we construct $H^1$ solutions that blow up in finite time with explicit blow-up profiles and blow-up rates. In particular, blowup can occur at any given finite set of points of ${mathbb R}^N$. The construction involves explicit functions $U$, solutions of the ordinary differential equation $U_t=|U|^alpha U$. In the simplest case, $U(t,x)=(|x|^k-alpha t)^{-frac 1alpha}$ for $t<0$, $xin {mathbb R}^N$. For $k$ sufficiently large, $U$ satisfies $|Delta U|ll U_t$ close to the blow-up point $(t,x)=(0,0)$, so that it is a suitable approximate solution of the problem. To construct an actual solution $u$ close to $U$, we use energy estimates and a compactness argument.
We investigate the dynamical role of inhibitory and highly connected nodes (hub) in synchronization and input processing of leaky-integrate-and-fire neural networks with short term synaptic plasticity. We take advantage of a heterogeneous mean-field approximation to encode the role of network structure and we tune the fraction of inhibitory neurons $f_I$ and their connectivity level to investigate the cooperation between hub features and inhibition. We show that, depending on $f_I$, highly connected inhibitory nodes strongly drive the synchronization properties of the overall network through dynamical transitions from synchronous to asynchronous regimes. Furthermore, a metastable regime with long memory of external inputs emerges for a specific fraction of hub inhibitory neurons, underlining the role of inhibition and connectivity also for input processing in neural networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا