ﻻ يوجد ملخص باللغة العربية
Neural network dynamics emerge from the interaction of spiking cells. One way to formulate the problem is through a theoretical framework inspired by ideas coming from statistical physics, the so-called mean-field theory. In this document, we investigate different issues related to the mean-field description of an excitatory network made up of leaky integrate-and-fire neurons. The description is written in the form a nonlinear partial differential equation which is known to blow up in finite time when the network is strongly connected. We prove that in a moderate coupling regime the equation is globally well-posed in the space of measures, and that there exist stationary solutions. In the case of weak connectivity we also demonstrate the uniqueness of the steady state and its global exponential stability. The method to show those mathematical results relies on a contraction argument of Doeblins type in the linear case, which corresponds to a population of non-interacting units.
We show that the stochastic Morris-Lecar neuron, in a neighborhood of its stable point, can be approximated by a two-dimensional Ornstein-Uhlenbeck (OU) modulation of a constant circular motion. The associated radial OU process is an example of a lea
We study the dynamics of identical leaky integrate-and-fire neurons with symmetric non-local coupling. Upon varying control parameters (coupling strength, coupling range, refractory period) we investigate the systems behaviour and highlight the forma
The effects of nonlocal and reflecting connectivity are investigated in coupled Leaky Integrate-and-Fire (LIF) elements, which assimilate the exchange of electrical signals between neurons. Earlier investigations have demonstrated that non-local and
Spiking neural networks (SNNs) based on Leaky Integrate and Fire (LIF) model have been applied to energy-efficient temporal and spatiotemporal processing tasks. Thanks to the bio-plausible neuronal dynamics and simplicity, LIF-SNN benefits from event
We present two Bayesian procedures to infer the interactions and external currents in an assembly of stochastic integrate-and-fire neurons from the recording of their spiking activity. The first procedure is based on the exact calculation of the most