ﻻ يوجد ملخص باللغة العربية
This paper continues the work of two previous treatments of bunch lengthening by a passive harmonic cavity in an electron storage ring. Such cavities, intended to reduce the effect of Touschek scattering, are a feature of fourth generation synchrotron light sources. The charge densities in the equilibrium state are given by solutions of coupled Haissinski equations, which are nonlinear integral equations. If the only wake fields are from cavity resonators, the unknowns can be the Fourier transforms of bunch densities at the resonator frequencies. The solution scheme based on this choice of unknowns proved to be deficient at the design current when multiple resonators were included. Here we return to the conventional formulation of Haissinski equations in coordinate space, the unknowns being charge densities at mesh points on a fine grid. This system would be awkward to solve by the Newton method used previously, because the Jacobian matrix is very large. Here a new solution is described, which is both Jacobian-free and much simpler. It is based on an elementary fixed point iteration, accelerated by Andersons method. The scheme is notably fast and robust, accommodating even the case of extreme over-stretching at current far beyond the design value. The Anderson method is promising for many problems in accelerator theory and beyond, since it is quite simple and can be used to attack all kinds of nonlinear and linear integral and differential equations. Results are presented for ALS-U, with updated design parameters. The model includes harmonic and main r.f. cavities, compensation of beam loading of the main cavity by adjustment of the generator voltage, and a realistic short range wake field (rather than the broad-band resonator wake invoked previously).
A higher harmonic cavity (HHC), used to cause bunch lengthening for an increase in the Touschek lifetime, is a feature of several fourth generation synchrotron light sources. The desired bunch lengthening is complicated by the presence of required ga
When a resistive feedback and single-bunch wake act together, it is known that some head-tail modes may become unstable even without space charge. This feedback-wake instability, FWI, modified by space charge to a certain degree, is shown to have a s
Higher-order mode (HOM) based intra-cavity beam diagnostics has been proved effectively and conveniently in superconducting radio-frequency (SRF) accelerators. Our recent research shows that the beam harmonics in the bunch train excited HOM spectrum,
We briefly compare in numerical simulations the relativistic ionization front and electron bunch seeding of the self-modulation of a relativistic proton bunch in plasma. When parameters are such that initial wakefields are equal with the two seeding
A plasma flow behind a relativistic electron bunch propagating through a cold plasma is found assuming that the transverse and longitudinal dimensions of the bunch are small and the bunch can be treated as a point charge. In addition, the bunch charg