ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of a low-mass comoving system using NOIRLab Source Catalog DR2

73   0   0.0 ( 0 )
 نشر من قبل Frank Kiwy
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the discovery of a low-mass comoving system found by means of the NOIRLab Source Catalog (NSC) DR2. The system consists of the high proper-motion star LEHPM 5005 and an ultracool companion 2MASS J22410186-4500298 with an estimated spectral type of L2. The primary (LEHPM 5005) is likely a mid-M dwarf but over-luminous for its color, indicating a possible close equal mass binary. According to the Gaia EDR3 parallax of the primary, the system is located at a distance of $58pm2$ pc. We calculated an angular separation of 7.2 between both components, resulting in a projected physical separation of 418 AU.

قيم البحث

اقرأ أيضاً

Despite extensive searches and the relative proximity of solar system objects (SSOS) to Earth, many remain undiscovered and there is still much to learn about their properties and interactions. This work is the first in a series dedicated to detectin g and analyzing SSOs in the all-sky NOIRLab Source Catalog (NSC). We search the first data release of the NSC with CANFind, a Computationally Automated NSC tracklet Finder. NSC DR1 contains 34 billion measurements of 2.9 billion unique objects, which CANFind categorizes as belonging to stationary (distant stars, galaxies) or moving (SSOs) objects via an iterative clustering method. Detections of stationary bodies for proper motion (mu) less than 2.5/hr (0.017 degrees/day) are identified and analyzed separately. Remaining detections belonging to hi-mu objects are clustered together over single nights to form tracklets. Each tracklet contains detections of an individual moving object, and is validated based on spatial linearity and motion through time. Proper motions are then calculated and used to connect tracklets and other unassociated measurements over multiple nights by predicting their locations at common times forming tracks. This method extracted 527,055 tracklets from NSC DR1 in an area covering 29,971 square degrees of the sky. The data show distinct groups of objects with similar observed mu in ecliptic coordinates, namely Main Belt Asteroids, Jupiter Trojans, and Kuiper Belt Objects. Apparent magnitudes range from 10-25 mag in the ugrizY and VR bands. Color-color diagrams show a bimodality of tracklets between primarily carbonaceous and siliceous groups, supporting prior studies.
Substellar companions at wide separation around stars hosting planets or brown dwarfs (BDs) yet close enough for their formation in the circumstellar disc are of special interest. In this letter we report the discovery of a wide (projected separation $sim$16.0arcsec, or 2400 AU, and position angle 114.61$^circ$) companion of the GQ Lup A-B system, most likely gravitationally bound to it. A VLT/X-Shooter spectrum shows that this star, 2MASS J15491331-3539118, is a bonafide low-mass ($sim$0.15 M$_odot$) young stellar object (YSO) with stellar and accretion/ejection properties typical of Lupus YSOs of similar mass, and with kinematics consistent with that of the GQ Lup A-B system. A possible scenario for the formation of the triple system is that GQ Lup A and 2MASS J15491331-3539118 formed by fragmentation of a turbulent core in the Lup I filament, while GQ Lup B, the BD companion of GQ Lup A at 0.7arcsec, formed in situ by the fragmentation of the circumprimary disc. The recent discoveries that stars form along cloud filaments would favour the scenario of turbulent fragmentation for the formation of GQ Lup A and 2MASS J15491331-3539118.
We use a suite of SPH simulations to investigate the susceptibility of protoplanetary discs to the effects of self-gravity as a function of star-disc properties. We also include passive irradiation from the host star using different models for the st ellar luminosities. The critical disc-to-star mass ratio for axisymmetry (for which we produce criteria) increases significantly for low-mass stars. This could have important consequences for increasing the potential mass reservoir in a proto Trappist-1 system, since even the efficient Ormel et al. (2017) formation model will be influenced by processes like external photoevaporation, which can rapidly and dramatically deplete the dust reservoir. The aforementioned scaling of the critical $M_d/M_*$ for axisymmetry occurs in part because the Toomre $Q$ parameter has a linear dependence on surface density (which promotes instability) and only an $M_*^{1/2}$ dependence on shear (which reduces instability), but also occurs because, for a given $M_d/M_*$, the thermal evolution depends on the host star mass. The early phase stellar irradiation of the disc (for which the luminosity is much higher than at the zero age main sequence, particularly at low stellar masses) can also play a key role in significantly reducing the role of self-gravity, meaning that even Solar mass stars could support axisymmetric discs a factor two higher in mass than usually considered possible. We apply our criteria to the DSHARP discs with spirals, finding that self-gravity can explain the observed spirals so long as the discs are optically thick to the host star irradiation.
Microlensing events can be used to directly measure the masses of single field stars to a precision of $sim$1-10%. The majority of direct mass measurements for stellar and sub-stellar objects typically only come from observations of binary systems. H ence microlensing provides an important channel for direct mass measurements of single stars. The Gaia satellite has observed $sim$1.7 billion objects, and analysis of the second data release has recently yielded numerous event predictions for the next few decades. However, the Gaia catalog is incomplete for nearby very-low-mass objects such as brown dwarfs for which mass measurements are most crucial. We employ a catalog of very-low-mass objects from Pan-STARRS data release 1 (PDR1) as potential lens stars, and we use the objects from Gaia data release 2 (GDR2) as potential source stars. We then search for future microlensing events up to the year 2070. The Pan-STARRS1 objects are first cross-matched with GDR2 to remove any that are present in both catalogs. This leaves a sample of 1,718 possible lenses. We fit MIST isochrones to the Pan-STARRS1, AllWISE and 2MASS photometry to estimate their masses. We then compute their paths on the sky, along with the paths of the GDR2 source objects, until the year 2070, and search for potential microlensing events. Source-lens pairs that will produce a microlensing signal with an astrometric amplitude of greater than 0.131 mas, or a photometric amplitude of greater than 0.4 mmag, are retained.
We assess the ionising effect of low energy protostellar cosmic rays in protoplanetary disks around a young solar mass star for a wide range of disk parameters. We assume a source of low energy cosmic rays located close to the young star which travel diffusively through the protoplanetary disk. We use observationally inferred values from nearby star-forming regions for the total disk mass and the radial density profile. We investigate the influence of varying the disk mass within the observed scatter for a solar mass star. We find that for a large range of disk masses and density profiles that protoplanetary disks are optically thin to low energy ($sim$3 GeV) cosmic rays. At $Rsim10$au, for all of the disks that we consider ($M_mathrm{disk}=6.0times10^{-4} - 2.4times 10^{-2}M_odot$), the ionisation rate due to low energy stellar cosmic rays is larger than that expected from unmodulated galactic cosmic rays. This is in contrast to our previous results which assumed a much denser disk which may be appropriate for a more embedded source. At $Rsim70$au, the ionisation rate due to stellar cosmic rays dominates in $sim$50% of the disks. These are the less massive disks with less steep density profiles. At this radius there is at least an order of magnitude difference in the ionisation rate between the least and most massive disk that we consider. Our results indicate, for a wide range of disk masses, that low energy stellar cosmic rays provide an important source of ionisation at the disk midplane at large radii ($sim$70au).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا