ترغب بنشر مسار تعليمي؟ اضغط هنا

Predicted microlensing events by nearby very-low-mass objects: Pan-STARRS DR1 vs. Gaia DR2

353   0   0.0 ( 0 )
 نشر من قبل Martin Bo Nielsen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Microlensing events can be used to directly measure the masses of single field stars to a precision of $sim$1-10%. The majority of direct mass measurements for stellar and sub-stellar objects typically only come from observations of binary systems. Hence microlensing provides an important channel for direct mass measurements of single stars. The Gaia satellite has observed $sim$1.7 billion objects, and analysis of the second data release has recently yielded numerous event predictions for the next few decades. However, the Gaia catalog is incomplete for nearby very-low-mass objects such as brown dwarfs for which mass measurements are most crucial. We employ a catalog of very-low-mass objects from Pan-STARRS data release 1 (PDR1) as potential lens stars, and we use the objects from Gaia data release 2 (GDR2) as potential source stars. We then search for future microlensing events up to the year 2070. The Pan-STARRS1 objects are first cross-matched with GDR2 to remove any that are present in both catalogs. This leaves a sample of 1,718 possible lenses. We fit MIST isochrones to the Pan-STARRS1, AllWISE and 2MASS photometry to estimate their masses. We then compute their paths on the sky, along with the paths of the GDR2 source objects, until the year 2070, and search for potential microlensing events. Source-lens pairs that will produce a microlensing signal with an astrometric amplitude of greater than 0.131 mas, or a photometric amplitude of greater than 0.4 mmag, are retained.



قيم البحث

اقرأ أيضاً

157 - Peter McGill 2018
We used Gaia Data Release 2 to search for upcoming photometric microlensing events, identifying two candidates with high amplification. In the case of candidate 1, a spectrum of the lens (l1) confirms it is a usdM3 subdwarf with mass $approx 0.11 M_o dot$, while the event reaches maximum amplification of $20^{+20}_{-10}$ mmag on November 3rd 2019 ($pm$1d). For candidate 2, the lens (l2) is a metal-poor M dwarf with mass $approx 0.38 M_odot$ derived from spectral energy distribution (SED) fitting, and maximum amplification of $10^{+40}_{-10}$ mmag occurs on June 3rd 2019 ($pm$4d). This permits a new algorithm for mass inference on the microlens. Given the predicted time, the photometric lightcurve of these events can be densely sampled by ground-based telescopes. The lightcurve is a function of the unknown lens mass, together with 8 other parameters for all of which Gaia provides measurements and uncertainties. Leveraging this prior information on the source and lens provided by Gaias astrometric solution, and assuming that a ground-based campaign can provide 50 measurements at mmag precision, we show for example that the mass of l1 can be recovered to within 20 per cent (68 per cent confidence limit).
The Zwicky Transient Facility (ZTF) is currently surveying the entire northern sky, including dense Galactic plane fields. Here, we present preliminary results of the search for gravitational microlensing events in the ZTF data collected from the beg inning of the survey (March 20, 2018) through June 30, 2019.
140 - Philip W. Lucas 2010
We report the discovery of a very cool, isolated brown dwarf, UGPS 0722-05, with the UKIDSS Galactic Plane Survey. The near-infrared spectrum displays deeper H2O and CH4 troughs than the coolest known T dwarfs and an unidentified absorption feature a t 1.275 um. We provisionally classify the object as a T10 dwarf but note that it may in future come to be regarded as the first example of a new spectral type. The distance is measured by trigonometric parallax as d=4.1{-0.5}{+0.6} pc, making it the closest known isolated brown dwarf. With the aid of Spitzer/IRAC we measure H-[4.5] = 4.71. It is the coolest brown dwarf presently known -- the only known T dwarf that is redder in H-[4.5] is the peculiar T7.5 dwarf SDSS J1416+13B, which is thought to be warmer and more luminous than UGPS 0722-05. Our measurement of the luminosity, aided by Gemini/T-ReCS N band photometry, is L = 9.2 +/- 3.1x10^{-7} Lsun. Using a comparison with well studied T8.5 and T9 dwarfs we deduce Teff=520 +/- 40 K. This is supported by predictions of the Saumon & Marley models. With apparent magnitude J=16.52, UGPS 0722-05 is the brightest T dwarf discovered by UKIDSS so far. It offers opportunities for future study via high resolution near-infrared spectroscopy and spectroscopy in the thermal infrared.
We present new parallax measurements from the CFHT Infrared Parallax Program and the Pan-STARRS 3$pi$ Steradian Survey for the young ($approx150-300$ Myr) triple system VHS J125601.92$-$125723.9. This system is composed of a nearly equal-flux binary (AB) and a wide, possibly planetary-mass companion (b). The systems published parallactic distance ($12.7pm1.0$ pc) implies absolute magnitudes unusually faint compared to known young objects and is in tension with the spectrophotometric distance for the central binary ($17.2pm2.6$ pc). Our CFHT and Pan-STARRS parallaxes are consistent, and the more precise CFHT result places VHS J1256-1257 at $22.2^{+1.1}_{-1.2}$ pc. Our new distance results in higher values for the companions mass ($19pm5$ M$_{rm Jup}$) and temperature ($1240pm50$ K), and also brings the absolute magnitudes of all three components into better agreement with known young objects.
We reprise the analysis of Stassun & Torres (2016), comparing the parallaxes of the eclipsing binaries reported in that paper to the parallaxes newly reported in the Gaia second data release (DR2). We find evidence for a systematic offset of $-82 pm 33$ micro-arcseconds, in the sense of the Gaia parallaxes being too small, for brightnesses $(G lesssim 12)$ and for distances (0.03--3 kpc) in the ranges spanned by the eclipsing binary sample. The offset does not appear to depend strongly on distance within this range, though there is marginal evidence that the offset increases (becomes slightly more negative) for distances $gtrsim 1$ kpc, up to the 3 kpc distances probed by the test sample. The offset reported here is consistent with the expectation that global systematics in the Gaia DR2 parallaxes are below 100 micro-arcseconds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا