ﻻ يوجد ملخص باللغة العربية
This work presents the emergence of superconductivity in Ir - doped Weyl semimetal T$_d$ - MoTe$_{2}$ with broken inversion symmetry. Chiral anomaly induced planar Hall effect and anisotropic magneto-resistance confirm the topological semimetallic nature of Mo$_{1-x}$Ir$_{x}$Te$_{2}$. Observation of weak anisotropic, moderately coupled type-II superconductivity in T$_d$ -Mo$_{1-x}$Ir$_{x}$Te$_{2}$ makes it a promising candidate for topological superconductor.
The Weyl semimetal MoTe$_2$ offers a rare opportunity to study the interplay between Weyl physics and superconductivity. Recent studies have found that Se substitution can boost the superconductivity up to 1.5K, but suppress the Td structure phase th
Two-dimensional (2D) transition-metal dichalcogenide (TMDs) MoTe2 has attracted much attention due to its predicted Weyl semimetal (WSM) state and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that the superconductiv
We report the observation of two gaps in the superconductor SmFeAsO$_{0.9}$F$_{0.1}$ (F-SmFeAsO) with $T_c=51.5K$ as measured by point-contact spectroscopy. Both gaps decrease with temperature and vanish at $T_c$ and the temperature dependence of the
Weyl nodes and Fermi arcs in type-II Weyl semimetals (WSMs) have led to lots of exotic transport phenomena. Recently, Mo$_{0.25}$W$_{0.75}$Te$_{2}$ has been established as a type-II WSM with Weyl points located near Fermi level, which offers an oppor
The ground state of the parent compounds of many high temperature superconductors is an antiferromagnetically (AFM) ordered phase, where superconductivity emerges when the AFM phase transition is suppressed by doping or application of pressure. This