ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity in doped Weyl semimetal Mo$_{0.9}$Ir$_{0.1}$Te$_{2}$ with broken inversion symmetry

103   0   0.0 ( 0 )
 نشر من قبل Ravi Prakash Singh
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work presents the emergence of superconductivity in Ir - doped Weyl semimetal T$_d$ - MoTe$_{2}$ with broken inversion symmetry. Chiral anomaly induced planar Hall effect and anisotropic magneto-resistance confirm the topological semimetallic nature of Mo$_{1-x}$Ir$_{x}$Te$_{2}$. Observation of weak anisotropic, moderately coupled type-II superconductivity in T$_d$ -Mo$_{1-x}$Ir$_{x}$Te$_{2}$ makes it a promising candidate for topological superconductor.



قيم البحث

اقرأ أيضاً

The Weyl semimetal MoTe$_2$ offers a rare opportunity to study the interplay between Weyl physics and superconductivity. Recent studies have found that Se substitution can boost the superconductivity up to 1.5K, but suppress the Td structure phase th at is essential for the emergence of Weyl state. A microscopic understanding of possible coexistence of enhanced superconductivity and the Td phase has not been established so far. Here, we use scanning tunneling microscopy (STM) to study a optimally doped new superconductor MoTe$_{1.85}$Se$_{0.15}$ with bulk Tc ~ 1.5K. By means of quasiparticle interference imaging, we identify the existence of low temperature Td phase with broken inversion symmetry where superconductivity globally coexists. Consistently, we find that the superconducting coherence length, extracted from both the upper critical field and the decay of density of states near a vortex, is much larger than the characteristic length scale of existing dopant derived chemical disorder. Our findings of robust superconductivity arising from a Weyl semimetal normal phase in MoTe$_{1.85}$Se$_{0.15}$, makes it a promising candidate for realizing topological superconductivity.
569 - F. C. Chen , X. Luo , R. C. Xiao 2015
Two-dimensional (2D) transition-metal dichalcogenide (TMDs) MoTe2 has attracted much attention due to its predicted Weyl semimetal (WSM) state and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that the superconductiv ity in MoTe2 single crystal can be much enhanced by the partial substitution of the Te ions by the S ones. The maximum of the superconducting temperature TC of MoTe1.8S0.2 single crystal is about 1.3 K. Compared with the parent MoTe2 single crystal (TC=0.1 K), nearly 13-fold in TC is improved in MoTe1.8S0.2 one. The superconductivity has been investigated by the resistivity and magnetization measurements. MoTe2-xSx single crystals belong to weak coupling superconductors and the improvement of the superconductivity may be related to the enhanced electron-phonon coupling induced by the S-ion substitution. A dome-shape superconducting phase diagram is obtained in the S-doped MoTe2 single crystals. MoTe2-xSx materials may provide a new platform for our understanding of superconductivity phenomena and topological physics in TMDs.
139 - Yonglei Wang , Lei Shan , Lei Fang 2008
We report the observation of two gaps in the superconductor SmFeAsO$_{0.9}$F$_{0.1}$ (F-SmFeAsO) with $T_c=51.5K$ as measured by point-contact spectroscopy. Both gaps decrease with temperature and vanish at $T_c$ and the temperature dependence of the gaps are described by the theoretical prediction of the Bardeen-Cooper-Schrieffer (BCS) theory. A zero-bias conductance peak (ZBCP) was observed, indicating the presence of Andreev bound states at the surface of F-SmFeAsO. Our results strongly suggest an unconventional nodal superconductivity with multiple gaps in F-SmFeAsO.
Weyl nodes and Fermi arcs in type-II Weyl semimetals (WSMs) have led to lots of exotic transport phenomena. Recently, Mo$_{0.25}$W$_{0.75}$Te$_{2}$ has been established as a type-II WSM with Weyl points located near Fermi level, which offers an oppor tunity to study its intriguing band structure by electrical transport measurements. Here, by selecting a special sample with the thickness gradient across two- (2D) and three-dimensional (3D) regime, we show strong evidences that Mo$_{0.25}$W$_{0.75}$Te$_{2}$ is a type-II Weyl semimetal by observing the following two dimensionality-dependent transport features: 1) A chiral-anomaly-induced anisotropic magneto-conductivity enhancement, proportional to the square of in-plane magnetic field (B$_{in}$$^{2}$); 2) An additional quantum oscillation with thickness-dependent phase shift. Our theoretical calculations show that the observed quantum oscillation originates from a Weyl-orbit-like scenario due to the unique band structure of Mo$_{0.25}$W$_{0.75}$Te$_{2}$. The in situ dimensionality-tuned transport experiment offers a new strategy to search for type-II WSMs.
The ground state of the parent compounds of many high temperature superconductors is an antiferromagnetically (AFM) ordered phase, where superconductivity emerges when the AFM phase transition is suppressed by doping or application of pressure. This behaviour implies a close relation between the two orders. Understanding the interplay between them promises a better understanding of how the superconducting condensate forms from the AFM ordered background. Here we explore this relation in real space at the atomic scale using low temperature spin-polarized scanning tunneling microscopy (SP-STM) and spectroscopy. We investigate the transition from antiferromagnetically ordered $mathrm{Fe}_{1+y}mathrm{Te}$ via the spin glass phase in $mathrm{Fe}_{1+y}mathrm{Se}_{0.1}mathrm{Te}_{0.9}$ to superconducting $mathrm{Fe}_{1+y}mathrm{Se}_{0.15}mathrm{Te}_{0.85}$. In $mathrm{Fe}_{1+y}mathrm{Se}_{0.1}mathrm{Te}_{0.9}$ we observe an atomic-scale coexistence of superconductivity and short-ranged bicollinear antiferromagnetic order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا