ﻻ يوجد ملخص باللغة العربية
Imaging atmospheric Cherenkov telescopes are continuously exposed to varying weather conditions that have short and long-term effects on their response to Cherenkov light from extensive air showers. This work presents the implementation of a throughput calibration method for the VERITAS telescopes taking into account changes in the optical response and detector performance over time. Different methods to measure the total throughput of the instrument, which depend on mirror reflectivites and PMT camera gain and efficiency, are discussed as well as the effect of its evolution on energy thresholds, effective collection areas, and energy reconstruction. The application of this calibration in the VERITAS data analysis chain is discussed, including the validation using Monte Carlo simulations and observations of the Crab Nebula.
High angular resolution observations at optical wavelengths provide valuable insights in stellar astrophysics, directly measuring fundamental stellar parameters, and probing stellar atmospheres, circumstellar disks, elongation of rapidly rotating sta
We present a novel method to measure precisely the relative spectral response of the fluorescence telescopes of the Pierre Auger Observatory. We used a portable light source based on a xenon flasher and a monochromator to measure the relative spectra
In radio astronomy, holography is a commonly used technique to create an image of the electric field distribution in the aperture of a dish antenna. The image is used to detect imperfections in the reflector surface. Similarly, holography can be appl
This paper is concerned with algorithms for calibration of direction dependent effects (DDE) in aperture synthesis radio telescopes (ASRT). After correction of Direction Independent Effects (DIE) using self-calibration, imaging performance can be lim
The Cherenkov Telescope Array (CTA) will be the next generation gamma-ray observatory, which will consist of three kinds of telescopes of different sizes. Among those, the Large Size Telescope (LST) will be the most sensitive in the low energy range