ﻻ يوجد ملخص باللغة العربية
One of the critical components in Industrial Gas Turbines (IGT) is the turbine blade. Design of turbine blades needs to consider multiple aspects like aerodynamic efficiency, durability, safety and manufacturing, which make the design process sequential and iterative.The sequential nature of these iterations forces a long design cycle time, ranging from several months to years. Due to the reactionary nature of these iterations, little effort has been made to accumulate data in a manner that allows for deep exploration and understanding of the total design space. This is exemplified in the process of designing the individual components of the IGT resulting in a potential unrealized efficiency. To overcome the aforementioned challenges, we demonstrate a probabilistic inverse design machine learning framework (PMI), to carry out an explicit inverse design. PMI calculates the design explicitly without excessive costly iteration and overcomes the challenges associated with ill-posed inverse problems. In this work, the framework will be demonstrated on inverse aerodynamic design of three-dimensional turbine blades.
Wind farm design primarily depends on the variability of the wind turbine wake flows to the atmospheric wind conditions, and the interaction between wakes. Physics-based models that capture the wake flow-field with high-fidelity are computationally v
We study the problem of adaptive contention window (CW) design for random-access wireless networks. More precisely, our goal is to design an intelligent node that can dynamically adapt its minimum CW (MCW) parameter to maximize a network-level utilit
From ancient to modern times, acoustic structures have been used to control the propagation of acoustic waves. However, the design of the acoustic structures has remained widely a time-consuming and computational resource-consuming iterative process.
The present investigation provides the first field characterization of the influence of turbulent inflow on the blade structural response of a utility-scale wind turbine (2.5MW), using the unique facility available at the Eolos Wind Energy Research S
This article presents an original methodology for the prediction of steady turbulent aerodynamic fields. Due to the important computational cost of high-fidelity aerodynamic simulations, a surrogate model is employed to cope with the significant vari