ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of Galaxy Clusters and a Head-Tail Radio Galaxy in the Direction of Globular Cluster NGC 6752

100   0   0.0 ( 0 )
 نشر من قبل Zhongqun Cheng
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of CXOU J191100-595621 and CXOU J191012-595619, two galaxy clusters serendipitously detected in the direction of globular cluster NGC 6752, based on archival {it Chandra} observations with a total exposure time of $sim 344$ ks. The deep {it Chandra} X-ray data enabled us to measure properties of both systems, which result in a redshift of $z=0.239pm0.013$ and $z=0.375pm0.016$, a temperature of $kT=3.32^{+0.57}_{-0.46}$ keV and $kT=3.71^{+1.18}_{-0.86}$ keV, an iron abundance of $Z_{rm Fe}=0.64^{+0.34}_{-0.29}Z_{rm Feodot}$ and $Z_{rm Fe}=1.29^{+0.97}_{-0.65}Z_{rm Feodot}$, and a rest-frame full band (0.5-7 keV) luminosity of $L_{rm X}=9.2^{+1.2}_{-1.1}times 10^{43} {rm , erg, s^{-1}}$ and $L_{rm X}=9.9^{+2.7}_{-2.2}times 10^{43} {rm , erg, s^{-1}}$ for CXOU J191100-595621 and CXOU J191012-595619, respectively. The temperature profile of CXOU J191100-595621 is found to decreases with decreasing radius, indicating a cool core in this cluster. The hydrostatic equilibrium estimation suggests the clusters are moderately weighted, with $M_{500}=(1.3pm0.4)times 10^{14}, M_{odot}$ and $M_{500}=(2.0pm1.5)times 10^{14}, M_{odot}$, respectively. We search for optical and radio counterparts of X-ray point sources in the clusters. Three active galactic nuclei are found, among which one is identified with a narrow-angle-tail radio galaxy, and one is found to associated with the brightest central galaxy (BCG) of CXOU J191100-595621.

قيم البحث

اقرأ أيضاً

We have discovered a previously unreported poor cluster of galaxies (RGZ-CL J0823.2+0333) through an unusual giant wide-angle tail radio galaxy found in the Radio Galaxy Zoo project. We obtained a spectroscopic redshift of $z=0.0897$ for the E0-type host galaxy, 2MASX J08231289+0333016, leading to M$_r = -22.6$ and a $1.4,$GHz radio luminosity density of $L_{rm 1.4} = 5.5times10^{24}$ W Hz$^{-1}$. These radio and optical luminosities are typical for wide-angle tailed radio galaxies near the borderline between Fanaroff-Riley (FR) classes I and II. The projected largest angular size of $approx8,$arcmin corresponds to $800,$kpc and the full length of the source along the curved jets/trails is $1.1,$Mpc in projection. X-ray data from the XMM-Newton archive yield an upper limit on the X-ray luminosity of the thermal emission surrounding RGZ J082312.9+033301,at $1.2-2.6times10^{43}$ erg s$^{-1}$ for assumed intra-cluster medium temperatures of $1.0-5.0,$keV. Our analysis of the environment surrounding RGZ J082312.9+033301 indicates that RGZ J082312.9+033301 lies within a poor cluster. The observed radio morphology suggests that (a) the host galaxy is moving at a significant velocity with respect to an ambient medium like that of at least a poor cluster, and that (b) the source may have had two ignition events of the active galactic nucleus with $10^7,$yrs in between. This reinforces the idea that an association between RGZ J082312.9+033301, and the newly discovered poor cluster exists.
71 - L. Pasquini 2005
Li abundances for 9 Turnoff (TO) stars of the intermediate metallicity cluster ([Fe/H]=-1.4) NGC6752 are presented. The cluster is known to show abundance anomalies and anticorrelations observed in both evolved and main sequence stars. We find that L i abundance anticorrelates with Na (and N) and correlates with O in these Turn-Off stars. For the first time we observe Pop II hot dwarfs systematically departing from the Spite plateau. The observed anticorrelations are in qualitative agreement with what is expected if the original gas were contaminated by Intermediate Mass AGB - processed material. However, a quantitative comparison shows that none of the existing models can reproduce all the observations at once. The very large amount of processed gas present in the cluster does not imply a pollution, but rather that the whole protocluster cloud was enriched by a previous generation of stars. We finally note that the different abundance patterns in NGC 6397 and NGC 6752 imply different ejecta of the preenrichment composition for the two clusters.
The Ophiuchus galaxy cluster exhibits a curious concave gas density discontinuity at the edge of its cool core. It was discovered in the Chandra X-ray image by Werner and collaborators, who considered a possibility of it being a boundary of an AGN-in flated bubble located outside the core, but discounted this possibility because it required much too powerful an AGN outburst. Using low-frequency (72-240 MHz) radio data from MWA GLEAM and GMRT, we found that the X-ray structure is, in fact, a giant cavity in the X-ray gas filled with diffuse radio emission with an extraordinarily steep radio spectrum. It thus appears to be a very aged fossil of the most powerful AGN outburst seen in any galaxy cluster ($pVsim 5times 10^{61}$ erg for this cavity). There is no apparent diametrically opposite counterpart either in X-ray or in the radio. It may have aged out of the observable radio band because of the cluster asymmetry. At present, the central AGN exhibits only a weak radio source, so it should have been much more powerful in the past to have produced such a bubble. The AGN is currently starved of accreting cool gas because the gas density peak is displaced by core sloshing. The sloshing itself could have been set off by this extraordinary explosion if it had occurred in an asymmetric gas core. This dinosaur may be an early example of a new class of sources to be uncovered by low-frequency surveys of galaxy clusters.
Using a cosmological dark matter simulation of a galaxy-cluster halo, we follow the temporal evolution of its globular cluster population. To mimic the red and blue globular cluster populations, we select at high redshift $(zsim 1)$ two sets of parti cles from individual galactic halos constrained by the fact that, at redshift $z=0$, they have density profiles similar to observed ones. At redshift $z=0$, approximately 60% of our selected globular clusters were removed from their original halos building up the intra-cluster globular cluster population, while the remaining 40% are still gravitationally bound to their original galactic halos. Since the blue population is more extended than the red one, the intra-cluster globular cluster population is dominated by blue globular clusters, with a relative fraction that grows from 60% at redshift $z=0$ up to 83% for redshift $zsim 2$. In agreement with observational results for the Virgo galaxy cluster, the blue intra-cluster globular cluster population is more spatially extended than the red one, pointing to a tidally disrupted origin.
We used optical images acquired with the UVIS channel of the Wide Field Camera 3 on board of the Hubble Space Telescope to construct the first high-resolution extinction map in the direction of NGC 6440, a globular cluster located in the bulge of our Galaxy. The map has a spatial resolution of 0.5 over a rectangular region of about 160 X 240 around the cluster center, with the long side in the North-West/South-East direction. We found that the absorption clouds show patchy and filamentary sub-structures with extinction variations as large as $delta {rm E}(B-V)sim0.5$ mag. We also performed a first-order proper motion analysis to distinguish cluster members from field interlopers. After the field decontamination and the differential reddening correction, the cluster sequences in the color-magnitude diagram appear much better defined, providing the best optical color-magnitude diagram so far available for this cluster.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا