ترغب بنشر مسار تعليمي؟ اضغط هنا

Intra-cluster Globular Clusters in a Simulated Galaxy Cluster

136   0   0.0 ( 0 )
 نشر من قبل Felipe Alberto Ramos
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a cosmological dark matter simulation of a galaxy-cluster halo, we follow the temporal evolution of its globular cluster population. To mimic the red and blue globular cluster populations, we select at high redshift $(zsim 1)$ two sets of particles from individual galactic halos constrained by the fact that, at redshift $z=0$, they have density profiles similar to observed ones. At redshift $z=0$, approximately 60% of our selected globular clusters were removed from their original halos building up the intra-cluster globular cluster population, while the remaining 40% are still gravitationally bound to their original galactic halos. Since the blue population is more extended than the red one, the intra-cluster globular cluster population is dominated by blue globular clusters, with a relative fraction that grows from 60% at redshift $z=0$ up to 83% for redshift $zsim 2$. In agreement with observational results for the Virgo galaxy cluster, the blue intra-cluster globular cluster population is more spatially extended than the red one, pointing to a tidally disrupted origin.



قيم البحث

اقرأ أيضاً

Stars in globular clusters (GCs) lose a non negligible amount of mass during their post-main sequence evolution. This material is then expected to build up a substantial intra-cluster medium (ICM) within the GC. However, the observed gas content in G Cs is a couple of orders of magnitude below these expectations. Here we follow the evolution of this stellar wind material through hydrodynamical simulations to attempt to reconcile theoretical predictions with observations. We test different mechanisms proposed in the literature to clear out the gas such as ram-pressure stripping by the motion of the GC in the Galactic halo medium and ionisation by UV sources. We use the code ramses to run 3D hydrodynamical simulations to study for the first time the ICM evolution within discretised multi-mass GC models including stellar winds and full radiative transfer. We find that the inclusion of both ram-pressure and ionisation is mandatory to explain why only a very low amount of ionised gas is observed in the core of GCs. The same mechanisms operating in ancient GCs that clear the gas could also be efficient at younger ages, meaning that young GCs would not be able to retain gas and form multiple generations of stars as assumed in many models to explain multiple populations. However, this rapid clearing of gas is consistent with observations of young massive clusters.
553 - Y. Schuberth 2007
We investigate whether the globular clusters (GCs) in the recently published sample of GCs in the Fornax cluster by Bergond and coworkers are indeed intra-cluster objects. We combine the catalogue of radial velocity measurements by Bergond et al. wit h our CTIO MOSAIC photometry in the Washington system and analyse the relation of metal-poor and metal-rich GCs with their host galaxies. The metal-rich GCs appear to be kinematically associated with their respective host galaxies. The vast majority of the metal-poor GCs found in between the galaxies of the Fornax cluster have velocities which are consistent with them being members of the very extended NGC 1399 GC system. We find that when the sample is restricted to the most accurate velocity measurements, the GC velocity dispersion profile can be described with a mass model derived for the NGC 1399 GC system within 80 kpc. We identify one ``vagrant GC whose radial velocity suggests that it is not bound to any galaxy unless its orbit has a very large apogalactic distance.
Intra-cluster (IC) populations are expected to be a natural result of the hierarchical assembly of clusters, yet their low space densities make them difficult to detect and study. We present the first definitive kinematic detection of an IC populatio n of globular clusters (GCs) in the Virgo cluster, around the central galaxy, M87. This study focuses on the Virgo core for which the combination of NGVS photometry and follow-up spectroscopy allows us to reject foreground star contamination and explore GC kinematics over the full Virgo dynamical range. The GC kinematics changes gradually with galactocentric distance, decreasing in mean velocity and increasing in velocity dispersion, eventually becoming indistinguishable from the kinematics of Virgo dwarf galaxies at $mathrm{R>320, kpc}$. By kinematically tagging M87 halo and intra-cluster GCs we find that 1) the M87 halo has a smaller fraction ($52pm3%$) of blue clusters with respect to the IC counterpart ($77pm10%$), 2) the $(g-r)_{0}$ vs $(i-z)_{0}$ color-color diagrams reveal a galaxy population that is redder than the IC population that may be due to a different composition in chemical abundance and progenitor mass, and 3) the ICGC distribution is shallower and more extended than the M87 GCs, yet still centrally concentrated. The ICGC specific frequency, $S_{N,mathrm{ICL}}=10.2pm4.8$, is consistent with what is observed for the population of quenched, low-mass galaxies within 1~Mpc from the clusters center. The IC population at Virgos center is thus consistent with being an accreted component from low-mass galaxies tidally stripped or disrupted through interactions, with a total mass of $mathrm{M_{ICL,tot}=10.8pm0.1times10^{11}M_{odot}}$.
The formation of Low mass X-ray binaries (LMXB) is favored within dense stellar systems such as Globular Clusters (GCs). The connection between LMXB and Globular Clusters has been extensively studied in the literature, but these studies have always b een restricted to the innermost regions of galaxies. We present a study of LMXB in GCs within the central 1.5 deg^2 of the Fornax cluster with the aim of confirming the existence of a population of LMXB in intra-cluster GCs and understand if their properties are related to the host GCs, to the environment or/and to different formation channels.
Magnetic fields are ubiquitous in galaxy clusters, yet their radial profile, power spectrum, and connection to host cluster properties are poorly known. Merging galaxy clusters hosting diffuse polarized emission in the form of radio relics offer a un ique possibility to study the magnetic fields in these complex systems. In this paper, we investigate the intra-cluster magnetic field in Abell 2345. This cluster hosts two radio relics that we detected in polarization with 1-2 GHz JVLA observations. X-ray XMM-Newton images show a very disturbed morphology. We derived the Rotation Measure (RM) of five polarized sources within $sim$ 1 Mpc from the cluster center applying the RM synthesis. Both, the average RM and the RM dispersion radial profiles probe the presence of intra-cluster magnetic fields. Using the thermal electron density profile derived from X-ray analysis and simulating a 3D magnetic field with fluctuations following a power spectrum derived from magneto-hydrodynamical cosmological simulations, we build mock RM images of the cluster. We constrained the magnetic field profile in the eastern radio relic sector by comparing simulated and observed RM images. We find that, within the framework of our model, the data require a magnetic field scaling with thermal electron density as $B(r)propto n_e(r)$. The best model has a central magnetic field (within a 200 kpc radius) of $2.8pm0.1$ $mu$G. The average magnetic field at the position of the eastern relic is $sim$0.3 $mu$G, a factor 2.7 lower than the equipartition estimate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا