ﻻ يوجد ملخص باللغة العربية
We present optical photometry and spectroscopy of the superluminous SN 2002gh from maximum light to $+202$ days, obtained as part of the Carnegie Type II Supernova (CATS) project. SN 2002gh is among the most luminous discovered supernovae ever, yet it remained unnoticed for nearly two decades. Using Dark Energy Camera archival images we identify the potential SN host galaxy as a faint dwarf galaxy, presumably having low metallicity, and in an apparent merging process with other nearby dwarf galaxies. We show that SN 2002gh is among the brightest hydrogen-poor SLSNe with $M_{V} = -22.40 pm 0.02$, with an estimated peak bolometric luminosity of $2.6 pm 0.2 times 10^{44}$ erg s$^{-1}$. We discount the decay of radioactive nickel as the main SN power mechanism, and assuming that the SN is powered by the spin down of a magnetar we obtain two alternative solutions. The first case, is characterized by significant magnetar power leakage, and $M_{mathrm{ej}}$ between 0.8 and 1.6 $M_{odot}$, $P_{mathrm{spin}} = 3.4$ ms, and $B = 5 times 10^{13}$ G. The second case does not require power leakage, resulting in a huge ejecta mass of about 30 $M_{odot}$, a fast spin period of $P_{mathrm{spin}} sim 1$ ms, and $Bsim 1.6 times 10^{14}$ G. We estimate a zero-age main-sequence mass between 16 and 19 $M_{odot}$ for the first case and of about 135 $M_{odot}$ for the second case. The latter case would place the SN progenitor among the most massive stars observed to explode as a SN.
We investigate the light-curve properties of a sample of 26 spectroscopically confirmed hydrogen-poor superluminous supernovae (SLSNe-I) in the Palomar Transient Factory (PTF) survey. These events are brighter than SNe Ib/c and SNe Ic-BL, on average,
We present the light curves of the hydrogen-poor superluminous supernovae (SLSNe-I) PTF12dam and iPTF13dcc, discovered by the (intermediate) Palomar Transient Factory. Both show excess emission at early times and a slowly declining light curve at lat
SN 2011fe is the nearest supernova of Type Ia (SN Ia) discovered in the modern multi-wavelength telescope era, and it also represents the earliest discovery of a SN Ia to date. As a normal SN Ia, SN 2011fe provides an excellent opportunity to deciphe
Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies have also revealed the existence of an instability arising from the
Massive stars that end their lives with helium cores in the range of 35 to 65 Msun are known to produce repeated thermonuclear outbursts due to a recurring pair-instability. In some of these events, solar masses of material are ejected in repeated ou