ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-Dimensional Simulations of Pulsational Pair-Instability Supernovae

420   0   0.0 ( 0 )
 نشر من قبل Ke-Jung Chen
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ke-Jung Chen




اسأل ChatGPT حول البحث

Massive stars that end their lives with helium cores in the range of 35 to 65 Msun are known to produce repeated thermonuclear outbursts due to a recurring pair-instability. In some of these events, solar masses of material are ejected in repeated outbursts of several times 10$^{50}$ erg each. Collisions between these shells can sometimes produce very luminous transients that are visible from the edge of the observable universe. Previous 1D studies of these events produce thin, high-density shells as one ejection plows into another. Here, in the first multidimensional simulations of these collisions, we show that the development of a Rayleigh-Taylor instability truncates the growth of the high density spike and drives mixing between the shells. The progenitor is a 110 Msun solar-metallicity star that was shown in earlier work to produce a superluminous supernova. The light curve of this more realistic model has a peak luminosity and duration that are similar to those of 1D models but a structure that is smoother.

قيم البحث

اقرأ أيضاً

76 - Ke-Jung Chen 2019
Massive stars of helium cores of 35-65 Msun eventually encounter the electron/positron creation instability, and it triggers explosive carbon or oxygen burning that produces several thermonuclear eruptions. The resulting catastrophe collisions of eru ptive shells sometimes produce luminous transients with peak luminosity of $10^{43} - 10^{44}$ erg/sec, known as pulsational pair-instability supernovae (PPISNe). Previous 2D simulations of colliding shells show the development of Rayleigh-Taylor (RT) instabilities and mixing. Here we present radiation hydrodynamic PPISNe simulations of a 110 Msun solar-metallicity star that was promising to produce a superluminous transit in the early work. Our comprehensive study contains a suite of one-, two-, and three-dimensional models. We discuss the impact of dimensionality and fluid instabilities on the resulting light curves. The results show the RT mixing found in previous multidimensional hydro studies transforms into a thin and distorted shell due to radiative cooling. Radiation from the wiggly shell peaks at its bolometric light curve of $sim 2times10^{43}$ erg/sec, lasting about 150 days and following with a plateau of $sim 3times10^{42}$ erg/sec for another two hundred days before it fades away. The total radiation energy emitted from colliding shells is $sim 1.8 times 10^{50}$ erg, which is $sim 27%$ of the kinetic energy of the major eruption. The dimensional effects also manifest on the physical properties, such as irregularity and thickness of the shell. Our study suggests PPISNe is a promising candidate of luminous SNe, the radiation of which originates from colliding shells with a homogeneous mixing of ejecta.
Pair-instability and pulsational pair-instability supernovae (PPISN) have not been unambiguously observed so far. They are, however, promising candidates for the progenitors of the heaviest binary black hole (BBH) mergers detected. If these BBHs are the product of binary evolution, then PPISNe could occur in very close binaries. Motivated by this, we discuss the implications of a PPISN happening with a close binary companion, and what impact these events have on the formation of merging BBHs through binary evolution. For this, we have computed a set of models of metal-poor ($Z_odot/10$) single helium stars using the texttt{MESA} software instrument. For PPISN progenitors with pre-pulse masses $>50M_odot$ we find that, after a pulse, heat deposited throughout the layers of the star that remain bound cause it to expand to more than $100R_odot$ for periods of $10^2-10^4;$~yrs depending on the mass of the progenitor. This results in long-lived phases of Roche-lobe overflow or even common-envelope events if there is a close binary companion, leading to additional electromagnetic transients associated to PPISN eruptions. If we ignore the effect of these interactions, we find that mass loss from PPISNe reduces the final black hole spin by $sim 30%$, induces eccentricities below the threshold of detectability of the LISA observatory, and can produce a double-peaked distribution of measured chirp masses in BBH mergers observed by ground-based detectors.
We calculate the evolution of massive stars, which undergo pulsational pair-instability (PPI) when the O-rich core is formed. The evolution from the main-sequence through the onset of PPI is calculated for stars with the initial masses of $80 - 140$ $M_{odot}$ and metallicities of $Z = 10^{-3} - 1.0$ $Z_odot$. Because of mass loss, $Z leq 0.5$ $Z_odot$ is necessary for stars to form He cores massive enough (i.e., mass $>40 ~M_odot$) to undergo PPI. The hydrodynamical phase of evolution from PPI through the beginning of Fe core collapse is calculated for the He cores with masses of $40 - 62 ~M_odot$ and $Z = 0$. During PPI, electron-positron pair production causes a rapid contraction of the O-rich core which triggers explosive O-burning and a pulsation of the core. We study the mass dependence of the pulsation dynamics, thermodynamics, and nucleosynthesis. The pulsations are stronger for more massive He cores and result in such a large amount of mass ejection such as $3 - 13$ $M_odot$ for $40 - 62 ~M_odot$ He cores. These He cores eventually undergo Fe-core collapse. The $64 ~M_odot$ He core undergoes complete disruption and becomes a pair-instability supernova. The H-free circumstellar matter ejected around these He cores is massive enough for to explain the observed light curve of Type I (H-free) superluminous supernovae with circumstellar interaction. We also note that the mass ejection sets the maximum mass of black holes (BHs) to be $sim 50$ $M_{odot}$, which is consistent with the masses of BHs recently detected by VIRGO and aLIGO.
187 - Ke-Jung Chen 2014
Numerical studies of primordial star formation suggest that the first stars in the universe may have been very massive. Stellar models indicate that non-rotating Population III stars with initial masses of 140-260 Msun die as highly energetic pair-in stability supernovae. We present new two-dimensional simulations of primordial pair-instability supernovae done with the CASTRO code. Our simulations begin at earlier times than previous multidimensional models, at the onset of core collapse, to capture any dynamical instabilities that may be seeded by collapse and explosive burning. Such instabilities could enhance explosive yields by mixing hot ash with fuel, thereby accelerating nuclear burning, and affect the spectra of the supernova by dredging up heavy elements from greater depths in the star at early times. Our grid of models includes both blue supergiants and red supergiants over the range in progenitor mass expected for these events. We find that fluid instabilities driven by oxygen and helium burning arise at the upper and lower boundaries of the oxygen shell $sim$ 20 - 100 seconds after core bounce. Instabilities driven by burning freeze out after the SN shock exits the helium core. As the shock later propagates through the hydrogen envelope, a strong reverse shock forms that drives the growth of Rayleigh--Taylor instabilities. In red supergiant progenitors, the amplitudes of these instabilities are sufficient to mix the supernova ejecta.
Superluminous supernovae have been proposed to arise from Population III progenitors that explode as pair-instability supernovae. Pop III stars are the first generation of stars in the Universe, and are thought to form as late as $z sim 6$. Future ne ar-infrared imaging facilities such as ULTIMATE-Subaru can potentially detect and identify these PISNe with a dedicated survey. Gravitational lensing by intervening structure in the Universe can aid in the detection of these rare objects by magnifying the high-$z$ source population into detectability. We perform a mock survey with ULTIMATE-Subaru, taking into account lensing by line-of-sight structure to evaluate its impact on the predicted detection rate. We compare a LOS mass reconstruction using observational data from the Hyper Suprime Cam survey to results from cosmological simulations to test their consistency in calculating the magnification distribution in the Universe to high-$z$, but find that the data-based method is still limited by an inability to accurately characterize structure beyond $z sim1.2$. We also evaluate a survey strategy of targeting massive galaxy clusters to take advantage of their large areas of high magnification. We find that targeting clusters can result in a gain of a factor of $sim$two in the predicted number of detected PISNe at $z > 5$, and even higher gains with increasing redshift, given our assumed survey parameters. For the highest-redshift sources at $z sim 7-9$, blank field surveys will not detect any sources, and lensing magnification by massive clusters will be necessary to observe this population.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا