ترغب بنشر مسار تعليمي؟ اضغط هنا

Guiding Query Position and Performing Similar Attention for Transformer-Based Detection Heads

155   0   0.0 ( 0 )
 نشر من قبل Xiaohu Jiang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

After DETR was proposed, this novel transformer-based detection paradigm which performs several cross-attentions between object queries and feature maps for predictions has subsequently derived a series of transformer-based detection heads. These models iterate object queries after each cross-attention. However, they dont renew the query position which indicates object queries position information. Thus model needs extra learning to figure out the newest regions that query position should express and need more attention. To fix this issue, we propose the Guided Query Position (GQPos) method to embed the latest location information of object queries to query position iteratively. Another problem of such transformer-based detection heads is the high complexity to perform attention on multi-scale feature maps, which hinders them from improving detection performance at all scales. Therefore we propose a novel fusion scheme named Similar Attention (SiA): besides the feature maps is fused, SiA also fuse the attention weights maps to accelerate the learning of high-resolution attention weight map by well-learned low-resolution attention weight map. Our experiments show that the proposed GQPos improves the performance of a series of models, including DETR, SMCA, YoloS, and HoiTransformer and SiA consistently improve the performance of multi-scale transformer-based detection heads like DETR and HoiTransformer.



قيم البحث

اقرأ أيضاً

In this paper, we propose a novel query design for the transformer-based detectors. In previous transformer-based detectors, the object queries are a set of learned embeddings. However, each learned embedding does not have an explicit physical meanin g and we can not explain where it will focus on. It is difficult to optimize as the prediction slot of each object query does not have a specific mode. In other words, each object query will not focus on a specific region. To solved these problems, in our query design, object queries are based on anchor points, which are widely used in CNN-based detectors. So each object query focus on the objects near the anchor point. Moreover, our query design can predict multiple objects at one position to solve the difficulty: one region, multiple objects. In addition, we design an attention variant, which can reduce the memory cost while achieving similar or better performance than the standard attention in DETR. Thanks to the query design and the attention variant, the proposed detector that we called Anchor DETR, can achieve better performance and run faster than the DETR with 10$times$ fewer training epochs. For example, it achieves 44.2 AP with 16 FPS on the MSCOCO dataset when using the ResNet50-DC5 feature for training 50 epochs. Extensive experiments on the MSCOCO benchmark prove the effectiveness of the proposed methods. Code is available at https://github.com/megvii-model/AnchorDETR.
Query expansion is a technique widely used in image search consisting in combining highly ranked images from an original query into an expanded query that is then reissued, generally leading to increased recall and precision. An important aspect of q uery expansion is choosing an appropriate way to combine the images into a new query. Interestingly, despite the undeniable empirical success of query expansion, ad-hoc methods with different caveats have dominated the landscape, and not a lot of research has been done on learning how to do query expansion. In this paper we propose a more principled framework to query expansion, where one trains, in a discriminative manner, a model that learns how images should be aggregated to form the expanded query. Within this framework, we propose a model that leverages a self-attention mechanism to effectively learn how to transfer information between the different images before aggregating them. Our approach obtains higher accuracy than existing approaches on standard benchmarks. More importantly, our approach is the only one that consistently shows high accuracy under different regimes, overcoming caveats of existing methods.
373 - Xin Zhou , Le Kang , Zhiyu Cheng 2021
With rapidly evolving internet technologies and emerging tools, sports related videos generated online are increasing at an unprecedentedly fast pace. To automate sports video editing/highlight generation process, a key task is to precisely recognize and locate the events in the long untrimmed videos. In this tech report, we present a two-stage paradigm to detect what and when events happen in soccer broadcast videos. Specifically, we fine-tune multiple action recognition models on soccer data to extract high-level semantic features, and design a transformer based temporal detection module to locate the target events. This approach achieved the state-of-the-art performance in both two tasks, i.e., action spotting and replay grounding, in the SoccerNet-v2 Challenge, under CVPR 2021 ActivityNet workshop. Our soccer embedding features are released at https://github.com/baidu-research/vidpress-sports. By sharing these features with the broader community, we hope to accelerate the research into soccer video understanding.
Given a query patch from a novel class, one-shot object detection aims to detect all instances of that class in a target image through the semantic similarity comparison. However, due to the extremely limited guidance in the novel class as well as th e unseen appearance difference between query and target instances, it is difficult to appropriately exploit their semantic similarity and generalize well. To mitigate this problem, we present a universal Cross-Attention Transformer (CAT) module for accurate and efficient semantic similarity comparison in one-shot object detection. The proposed CAT utilizes transformer mechanism to comprehensively capture bi-directional correspondence between any paired pixels from the query and the target image, which empowers us to sufficiently exploit their semantic characteristics for accurate similarity comparison. In addition, the proposed CAT enables feature dimensionality compression for inference speedup without performance loss. Extensive experiments on COCO, VOC, and FSOD under one-shot settings demonstrate the effectiveness and efficiency of our method, e.g., it surpasses CoAE, a major baseline in this task by 1.0% in AP on COCO and runs nearly 2.5 times faster. Code will be available in the future.
This paper studies the relative importance of attention heads in Transformer-based models to aid their interpretability in cross-lingual and multi-lingual tasks. Prior research has found that only a few attention heads are important in each mono-ling ual Natural Language Processing (NLP) task and pruning the remaining heads leads to comparable or improved performance of the model. However, the impact of pruning attention heads is not yet clear in cross-lingual and multi-lingual tasks. Through extensive experiments, we show that (1) pruning a number of attention heads in a multi-lingual Transformer-based model has, in general, positive effects on its performance in cross-lingual and multi-lingual tasks and (2) the attention heads to be pruned can be ranked using gradients and identified with a few trial experiments. Our experiments focus on sequence labeling tasks, with potential applicability on other cross-lingual and multi-lingual tasks. For comprehensiveness, we examine two pre-trained multi-lingual models, namely multi-lingual BERT (mBERT) and XLM-R, on three tasks across 9 languages each. We also discuss the validity of our findings and their extensibility to truly resource-scarce languages and other task settings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا