ترغب بنشر مسار تعليمي؟ اضغط هنا

The third- and fourth-order orbital angular momentum multiplexed amplification with ultra-low differential mode gain

350   0   0.0 ( 0 )
 نشر من قبل Tianjin Wen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this Letter, a ring-core erbium-doped fiber (RC-EDF), with two-layer erbium-doped structure, supporting up to the fourth-order orbital angular momentum (OAM) mode is designed and fabricated for OAM mode multiplexed amplification. Using the RC-EDF, the third- and fourth-order OAM modes amplification with ultra-low differential mode gain (DMG) is demonstrated by observing both the modal intensity and phase distribution and measuring the modal gain under the fundamental mode core-pumping. The measured average gain of four modes (l=+3, -3, +4, -4) multiplexed amplification is higher than 19dB cover the C-band and the DMG is less than 1dB. Additionally, the gain of two conjugate OAM modes are almost the same under different pump power no matter they are amplified simultaneously or separately.



قيم البحث

اقرأ أيضاً

Nanophotonic platforms such as metasurfaces, achieving arbitrary phase profiles within ultrathin thickness, emerge as miniaturized, ultracompact and kaleidoscopic optical vortex generators. However, it is often required to segment or interleave indep endent subarray metasurfaces to multiplex optical vortices in a single nano device, which in turn affects the compactness and channel capacity of the device. Here, inspired by phyllotaxis patterns in pine cones and sunflowers, we theoretically prove and experimentally report that multiple optical vortices can be produced in a single compact phyllotaxis nanosieve, both in free space and on a chip, where one metaatom may contribute to many vortices simultaneously. The time resolved dynamics of on chip interference wavefronts between multiple plasmonic vortices was revealed by ultrafast time-resolved photoemission electron microscopy. Our nature inspired optical vortex generator would facilitate various vortex related optical applications, including structured wavefront shaping, free space and plasmonic vortices, and high capacity information metaphotonics.
Light beams carrying orbital angular momentum are key resources in modern photonics. In many applications, the ability of measuring the complex spectrum of structured light beams in terms of these fundamental modes is crucial. Here we propose and exp erimentally validate a simple method that achieves this goal by digital analysis of the interference pattern formed by the light beam and a reference field. Our approach allows one to characterize the beam radial distribution also, hence retrieving the entire information contained in the optical field. Setup simplicity and reduced number of measurements could make this approach practical and convenient for the characterization of structured light fields.
Semiconductor lasers capable of generating a vortex beam with a specific orbital angular momentum (OAM) order are highly attractive for applications ranging from nanoparticle manipulation, imaging and microscopy to fibre and quantum communications. I n this work, an electrically pumped OAM laser operating at telecom wavelengths is fabricated by monolithically integrating an optical vortex emitter with a distributed feedback (DFB) laser on the same InGaAsP/InP epitaxial wafer. A single-step dry etching process is adopted to complete the OAM emitter, equipped with specially designed top gratings. The vortex beam emitted by the integrated laser is captured, and its OAM mode purity characterized. The electrically pumped OAM laser eliminates the external laser required by silicon- or silicon-on-insulator (SOI)-based OAM emitters, thus demonstrating great potential for applications in communication systems and quantum domain.
On-chip photon sources carrying orbital angular momentum (OAM) are in demand for high-capacity optical information processing in both classical and quantum regimes. However, currently-exploited integrated OAM sources have been primarily limited to th e classical regime. Herein, we demonstrate a room-temperature on-chip integrated OAM source that emits well-collimated single photons, with a single-photon purity of g(2)(0) = 0.22, carrying entangled spin and orbital angular momentum states and forming two spatially separated entangled radiation channels with different polarization properties. The OAM-encoded single photons are generated by efficiently outcoupling diverging surface plasmon polaritons excited with a deterministically positioned quantum emitter via Archimedean spiral gratings. Our OAM single-photon sources bridge the gap between conventional OAM manipulation and nonclassical light sources, enabling high-dimensional and large-scale photonic quantum systems for information processing.
Light beams carrying orbital angular momentum (OAM) have led to stunning applications in various fields from quantum information to microscopy. In this letter, we examine OAM from the recently discovered high-harmonic generation (HHG) in semiconducto r crystals. HHG from solids could be a valuable approach for integrated high-flux short-wavelength coherent light sources. The solid state nature of the generation medium allows the possibility to tailor directly the radiation at the source of the emission and offers a substantial degree of freedom for spatial beam shaping. First, we verify the fundamental principle of the transfer and conservation of the OAM from the generation laser to the harmonics. Second, we create OAM beams by etching a spiral zone structure directly at the surface of a zinc oxide crystal. Such diffractive optics act on the generated harmonics and produces focused optical vortices with nanometer scale sizes that may have potential applications in nanoscale optical trapping and quantum manipulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا