ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring the complex orbital angular momentum spectrum and spatial mode decomposition of structured light beams

138   0   0.0 ( 0 )
 نشر من قبل Filippo Cardano
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Light beams carrying orbital angular momentum are key resources in modern photonics. In many applications, the ability of measuring the complex spectrum of structured light beams in terms of these fundamental modes is crucial. Here we propose and experimentally validate a simple method that achieves this goal by digital analysis of the interference pattern formed by the light beam and a reference field. Our approach allows one to characterize the beam radial distribution also, hence retrieving the entire information contained in the optical field. Setup simplicity and reduced number of measurements could make this approach practical and convenient for the characterization of structured light fields.



قيم البحث

اقرأ أيضاً

Quantum complementarity states that particles, e.g. electrons, can exhibit wave-like properties such as diffraction and interference upon propagation. textit{Electron waves} defined by a helical wavefront are referred to as twisted electrons~cite{uch ida:10,verbeeck:10,mcmorran:11}. These electrons are also characterised by a quantized and unbounded magnetic dipole moment parallel to their propagation direction, as they possess a net charge of $-|e|$~cite{bliokh:07}. When interacting with magnetic materials, the wavefunctions of twisted electrons are inherently modified~cite{lloyd:12b,schattschneider:14a,asenjo:14}. Such variations therefore motivate the need to analyze electron wavefunctions, especially their wavefronts, in order to obtain information regarding the materials structure~cite{harris:15}. Here, we propose, design, and demonstrate the performance of a device for measuring an electrons azimuthal wavefunction, i.e. its orbital angular momentum (OAM) content. Our device consists of nanoscale holograms designed to introduce astigmatism onto the electron wavefunctions and spatially separate its phase components. We sort pure and superposition OAM states of electrons ranging within OAM values of $-10$ and $10$. We employ the device to analyze the OAM spectrum of electrons having been affected by a micron-scale magnetic dipole, thus establishing that, with a midfield optical configuration, our sorter can be an instrument for nano-scale magnetic spectroscopy.
We present a tunable liquid crystal device that converts pure orbital angular momentum eigenmodes of a light beam into equal-weight superpositions of opposite-handed eigenmodes and vice versa. For specific input states, the device may thus simulate t he behavior of a {pi}/2 phase retarder in a given two-dimensional orbital angular momentum subspace, analogous to a quarter-wave plate for optical polarization. A variant of the same device generates the same final modes starting from a Gaussian input.
Fundamental and applied concepts concerning the ability of light beams to carry a certain mechanical angular momentum with respect to the propagation axis are reviewed and discussed. Following issues are included: Historical reference; Angular mo mentum of a paraxial beam and its constituents; Spin angular momentum and paradoxes associated with it; Orbital angular momentum; Circularly-spiral beams: examples and methods of generation; Orbital angular momentum and the intensity moments; Symmetry breakdown and decomposition of the orbital angular momentum; Mechanical models of the vortex light beams; Mechanical action of the beam angular momentum; Rotational Doppler effect, its manifestation in the image rotation; Spectrum of helical harmonics and associated problems; Non-collinear rotational Doppler effect; Properties of a beam forcedly rotating around its own axis. Research prospects and ways of practical utilization of optical beams with angular momentum.
The existing methods for measuring the orbital-angular-momentum (OAM) spectrum suffer from issues such as poor efficiency, strict interferometric stability requirements, and too much loss. Furthermore, most techniques inevitably discard part of the f ield and measure only a post-selected portion of the true spectrum. Here, we propose and demonstrate an interferometric technique for measuring the true OAM spectrum of optical fields in a single-shot manner. Our technique directly encodes the OAM-spectrum information in the azimuthal intensity profile of the output interferogram. In the absence of noise, the spectrum can be fully decoded using a single acquisition of the output interferogram, and, in the presence of noise, acquisition of two suitable interferograms is sufficient for the purpose. As an important application of our technique, we demonstrate measurements of the angular Schmidt spectrum of the entangled photons produced by parametric down-conversion and report a broad spectrum with the angular Schmidt number 82.1.
The function to measure orbital angular momentum (OAM) distribution of vortex light is essential for OAM applications. Although there are lots of works to measure OAM modes, it is difficult to measure the power distribution of different OAM modes qua ntitatively and instantaneously, let alone measure the phase distribution among them. In this work, we demonstrate an OAM complex spectrum analyzer, which enables to measure the power and phase distribution of OAM modes simultaneously by employing rotational Doppler Effect. The original OAM mode distribution is mapped to electrical spectrum of beating signals with a photodetector. The power distribution and phase distribution of superimposed OAM beams are successfully retrieved by analyzing the electrical spectrum. We also extend the measurement to other spatial modes, such as linear polarization modes. These results represent a new landmark of spatial mode analysis and show great potentials in optical communication and OAM quantum state tomography.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا