ﻻ يوجد ملخص باللغة العربية
Mini-batch optimal transport (m-OT) has been widely used recently to deal with the memory issue of OT in large-scale applications. Despite their practicality, m-OT suffers from misspecified mappings, namely, mappings that are optimal on the mini-batch level but do not exist in the optimal transportation plan between the original measures. To address the misspecified mappings issue, we propose a novel mini-batch method by using partial optimal transport (POT) between mini-batch empirical measures, which we refer to as mini-batch partial optimal transport (m-POT). Leveraging the insight from the partial transportation, we explain the source of misspecified mappings from the m-OT and motivate why limiting the amount of transported masses among mini-batches via POT can alleviate the incorrect mappings. Finally, we carry out extensive experiments on various applications to compare m-POT with m-OT and recently proposed mini-batch method, mini-batch unbalanced optimal transport (m-UOT). We observe that m-POT is better than m-OT deep domain adaptation applications while having comparable performance with m-UOT. On other applications, such as deep generative model, gradient flow, and color transfer, m-POT yields more favorable performance than both m-OT and m-UOT.
Mini-batch optimal transport (m-OT) has been successfully used in practical applications that involve probability measures with intractable density, or probability measures with a very high number of supports. The m-OT solves several sparser optimal
In statistical learning for real-world large-scale data problems, one must often resort to streaming algorithms which operate sequentially on small batches of data. In this work, we present an analysis of the information-theoretic limits of mini-batc
The popularity of Bayesian optimization methods for efficient exploration of parameter spaces has lead to a series of papers applying Gaussian processes as surrogates in the optimization of functions. However, most proposed approaches only allow the
We propose a novel approach to the problem of multilevel clustering, which aims to simultaneously partition data in each group and discover grouping patterns among groups in a potentially large hierarchically structured corpus of data. Our method inv
Mini-batch optimization has proven to be a powerful paradigm for large-scale learning. However, the state of the art parallel mini-batch algorithms assume synchronous operation or cyclic update orders. When worker nodes are heterogeneous (due to diff