ﻻ يوجد ملخص باللغة العربية
We study a one-dimensional lattice model subject to non-Hermitian quasiperiodic potentials. Firstly, we strictly demonstrate that there exists an interesting dual mapping relation between $|a|<1$ and $|a|>1$ with regard to the potential tuning parameter $a$. The localization property of $|a|<1$ can be directly mapping to that of $|a|>1$, the analytical expression of the mobility edge of $|a|>1$ is therefore obtained through spectral properties of $|a|<1$. More impressive, we prove rigorously that even if the phase $theta eq 0$ in quasiperiodic potentials, the model becomes non-$mathcal{PT}$ symmetric, however, there still exists a new type of real-complex transition driven by non-Hermitian disorder, which is a new universality class beyond $mathcal{PT}$ symmetric class.
We study the delocalization dynamics of interacting disordered hard-core bosons for quasi-1D and 2D geometries, with system sizes and time scales comparable to state-of-the-art experiments. The results are strikingly similar to the 1D case, with slow
We study a one-dimensional $p$-wave superconductor subject to non-Hermitian quasiperiodic potentials. Although the existence of the non-Hermiticity, the Majorana zero mode is still robust against the disorder perturbation. The analytic topological ph
Non-hermitian, $mathcal{PT}$-symmetric Hamiltonians, experimentally realized in optical systems, accurately model the properties of open, bosonic systems with balanced, spatially separated gain and loss. We present a family of exactly solvable, two-d
We investigate the dynamical evolution of a parity-time ($mathcal{PT}$) symmetric extension of the Aubry-Andr{e} (AA) model, which exhibits the coincidence of a localization-delocalization transition point with a $mathcal{PT}$ symmetry breaking point
We study the cross-stitch flat band lattice with a $mathcal{PT}$-symmetric on-site potential and uncover mobility edges with exact solutions. Furthermore, we study the relationship between the $mathcal{PT}$ symmetry broken point and the localization-