ﻻ يوجد ملخص باللغة العربية
Federated learning (FL) is a distributed machine learning approach involving multiple clients collaboratively training a shared model. Such a system has the advantage of more training data from multiple clients, but data can be non-identically and independently distributed (non-i.i.d.). Privacy and integrity preserving features such as differential privacy (DP) and robust aggregation (RA) are commonly used in FL. In this work, we show that on common deep learning tasks, the performance of FL models differs amongst clients and situations, and FL models can sometimes perform worse than local models due to non-i.i.d. data. Secondly, we show that incorporating DP and RA degrades performance further. Then, we conduct an ablation study on the performance impact of different combinations of common personalization approaches for FL, such as finetuning, mixture-of-experts ensemble, multi-task learning, and knowledge distillation. It is observed that certain combinations of personalization approaches are more impactful in certain scenarios while others always improve performance, and combination approaches are better than individual ones. Most clients obtained better performance with combined personalized FL and recover from performance degradation caused by non-i.i.d. data, DP, and RA.
Federated learning is emerging as a machine learning technique that trains a model across multiple decentralized parties. It is renowned for preserving privacy as the data never leaves the computational devices, and recent approaches further enhance
With the proliferation of edge smart devices and the Internet of Vehicles (IoV) technologies, intelligent fatigue detection has become one of the most-used methods in our daily driving. To improve the performance of the detection model, a series of t
Federated learning, as a distributed learning that conducts the training on the local devices without accessing to the training data, is vulnerable to dirty-label data poisoning adversarial attacks. We claim that the federated learning model has to a
Federated learning (FL) has been proposed to allow collaborative training of machine learning (ML) models among multiple parties where each party can keep its data private. In this paradigm, only model updates, such as model weights or gradients, are
XGBoost is one of the most widely used machine learning models in the industry due to its superior learning accuracy and efficiency. Targeting at data isolation issues in the big data problems, it is crucial to deploy a secure and efficient federated