ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermophotovoltaic Efficiency of 40%

75   0   0.0 ( 0 )
 نشر من قبل Alina LaPotin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the fabrication and measurement of thermophotovoltaic (TPV) cells with efficiencies of >40%. The TPV cells are 2-junction devices with high-quality 1.0-1.4 eV materials that target high emitter temperatures of 1900-2400{deg}C. These cells can be integrated into a TPV system for thermal energy grid storage (TEGS) to enable dispatchable renewable energy. With these new TPV cells, TEGS has a pathway to reach sufficiently high efficiency and sufficiently low cost to enable full decarbonization of the grid. Furthermore, the high demonstrated efficiency gives TPV the potential to compete with turbine-based heat engines for large-scale power production with respect to both cost and performance, thereby enabling possible usage in natural gas or hydrogen-fueled electricity production.

قيم البحث

اقرأ أيضاً

63 - Dudong Feng , Shannon K. Yee , 2021
Various spectral control techniques can be applied to improve the performance of a thermophotovoltaic (TPV) system. For example, a back surface reflector (BSR) can improve the performance of TPV systems. A conventional metal BSR structure enhances th e photogeneration rate by increasing the absorption probability of photons via back surface reflection, affording a second chance for absorption. However, surface passivation and external luminescence effects introduced by BSR structures have been previously ignored, which potentially decreases the performance of TPV systems. Recently, a back gapped reflector (BGR) structure was proposed to greatly improve the performance of far-field TPV systems by reducing reflection loss at the semiconductor-metal interface. In the present work, the performance improvement on a thin-film, near-field InAs TPV system with a BGR is investigated, comparing its performance to that with a conventional metal BSR. Surface passivation conditions are also investigated to further improve the performance of TPV systems with back reflectors. The output power and efficiency are calculated using an iterative model combining fluctuational electrodynamics and the full drift-diffusion model. For the well-passivated condition, when the BSR is replaced by the BGR, the calculated conversion efficiency was improved from 16.4% to 21% and the output power was increased by 10% for the near-field regime. Finally, the reflection loss and external luminescence loss are analyzed to explain the performance improvement.
Metasurfaces are an enabling technology for complex wave manipulation functions, including in the terahertz frequency range, where they are expected to advance security, imaging, sensing, and communications technology. For operation in transmission, Huygens metasurfaces are commonly used, since their good impedance match to the surrounding media minimizes reflections and maximizes transmission. Recent theoretical work has shown that Huygens metasurfaces are non-optimal, particularly for large angles of refraction, and that to eliminate reflections and spurious diffracted beams it is necessary to use a bianisotropic metasurface. However, it remains to be demonstrated how significant the efficiency improvement is when using bianisotropic metasurfaces, considering all the non-ideal features that arise when implementing the metasurface design with real meta-atoms. Here we compare concrete terahertz metasurface designs based on the Huygens and Omega-type bianisotropic approaches, demonstrating anomalous refraction angles for 55 degrees, and 70 degrees. We show that for the lower angle of 55 degrees, there is no significant improvement when using the bianisotropic design, whereas for refraction at 70 degrees the bianisotropic design shows much higher efficiency and fidelity of refraction into the designed direction. We also demonstrate the strong perturbations caused by near-field interaction, both between and within cells, which we compensate using numerical optimization.
The power conversion efficiency of an ultrathin CIGS solar cell was maximized using a coupled optoelectronic model to determine the optimal bandgap grading of the nonhomogeneous CIGS layer in the thickness direction. The bandgap of the CIGS layer was either sinusoidally or linearly graded, and the solar cell was modeled to have a metallic backreflector corrugated periodically along a fixed direction in the plane. The model predicts that specially tailored bandgap grading can significantly improve the efficiency, with much smaller improvements due to the periodic corrugations. An efficiency of 27.7% with the conventional 2200-nm-thick CIGS layer is predicted with sinusoidal bandgap grading, in comparison to 22% efficiency obtained experimentally with homogeneous bandgap. Furthermore, the inclusion of sinusoidal grading increases the predicted efficiency to 22.89% with just a 600-nm-thick CIGS layer. These high efficiencies arise due to a large electron-hole-pair generation rate in the narrow-bandgap regions and the elevation of the open-circuit voltage due to a wider bandgap in the region toward the front surface of the CIGS layer. Thus, bandgap nonhomogeneity, in conjunction with periodic corrugation of the backreflector, can be effective in realizing ultrathin CIGS solar cells that can help overcome the scarcity of indium.
The trade-off between radiation efficiency and antenna bandwidth, expressed in terms of Q-factor, for small antennas is formulated as a multi-objective optimization problem in current distributions of predefined support. Variants on the problem are c onstructed to demonstrate the consequences of requiring a self-resonant current as opposed to one tuned by an external reactance. The resulting Pareto-optimal sets reveal the relative cost of valuing low radiation Q-factor over high efficiency, the cost in efficiency to require a self-resonant current, the effects of lossy parasitic loading, and other insights.
Extensive electrical characterization of ring oscillators (ROs) made in high-$kappa$ metal gate 28nm Fully-Depleted Silicon-on- Insulator (FD-SOI) technology is presented for a set of temperatures between 296 and 4.3K. First, delay per stage ($tau_P$ ), static current ($I_{STAT}$), and dynamic current ($I_{DYN}$) are analyzed for the case of the increase of threshold voltage ($V_{TH}$) observed at low temperature. Then, the same analysis is performed by compensating $V_{TH}$ to a constant, temperature independent value through forward body-biasing (FBB). Energy efficiency optimization is proposed for different supply voltages ($V_{DD}$) in order to find an optimal operating point combining both high RO frequencies and low power dissipation. We show that the Energy-Delay product ($EDP$) can be significantly reduced at low temperature by applying a forward body bias voltage ($V_{FBB}$). We demonstrate that outstanding performance of RO in terms of speed ($tau_P$=37ps) and static power (7nA/stage) can be achieved at 4.3K with $V_{DD}$ reduced down to 0.325V.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا