ﻻ يوجد ملخص باللغة العربية
Extensive electrical characterization of ring oscillators (ROs) made in high-$kappa$ metal gate 28nm Fully-Depleted Silicon-on- Insulator (FD-SOI) technology is presented for a set of temperatures between 296 and 4.3K. First, delay per stage ($tau_P$), static current ($I_{STAT}$), and dynamic current ($I_{DYN}$) are analyzed for the case of the increase of threshold voltage ($V_{TH}$) observed at low temperature. Then, the same analysis is performed by compensating $V_{TH}$ to a constant, temperature independent value through forward body-biasing (FBB). Energy efficiency optimization is proposed for different supply voltages ($V_{DD}$) in order to find an optimal operating point combining both high RO frequencies and low power dissipation. We show that the Energy-Delay product ($EDP$) can be significantly reduced at low temperature by applying a forward body bias voltage ($V_{FBB}$). We demonstrate that outstanding performance of RO in terms of speed ($tau_P$=37ps) and static power (7nA/stage) can be achieved at 4.3K with $V_{DD}$ reduced down to 0.325V.
This paper reports the first cryogenic characterization of 28nm Fully-Depleted-SOI CMOS technology. A comprehensive study of digital/analog performances and body-biasing from room to the liquid helium temperature is presented. Despite a cryogenic ope
Spin-torque nano-oscillators can emulate neurons at the nanoscale. Recent works show that the non-linearity of their oscillation amplitude can be leveraged to achieve waveform classification for an input signal encoded in the amplitude of the input v
This paper presents a physics-based model for the threshold voltage in bulk MOSFETs valid from room down to cryogenic temperature (4.2 K). The proposed model is derived from Poissons equation including bandgap widening, intrinsic carrier-density scal
Cryogenic CMOS technology (cryo-CMOS) offers a scalable solution for quantum device interface fabrication. Several previous works have studied the characterization of CMOS technology at cryogenic temperatures for various process nodes. However, CMOS
Spin torque nano-oscillators (STNO) are nanoscale devices with wide band frequency tunability. Their multifunctional RF properties are well suited to define novel schemes for wireless communications that use basic protocols for data transmission such