ترغب بنشر مسار تعليمي؟ اضغط هنا

A Synthesis-Based Approach for Thermal-to-Visible Face Verification

377   0   0.0 ( 0 )
 نشر من قبل Neehar Peri
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, visible-spectrum face verification systems have been shown to match expert forensic examiner recognition performance. However, such systems are ineffective in low-light and nighttime conditions. Thermal face imagery, which captures body heat emissions, effectively augments the visible spectrum, capturing discriminative facial features in scenes with limited illumination. Due to the increased cost and difficulty of obtaining diverse, paired thermal and visible spectrum datasets, algorithms and large-scale benchmarks for low-light recognition are limited. This paper presents an algorithm that achieves state-of-the-art performance on both the ARL-VTF and TUFTS multi-spectral face datasets. Importantly, we study the impact of face alignment, pixel-level correspondence, and identity classification with label smoothing for multi-spectral face synthesis and verification. We show that our proposed method is widely applicable, robust, and highly effective. In addition, we show that the proposed method significantly outperforms face frontalization methods on profile-to-frontal verification. Finally, we present MILAB-VTF(B), a challenging multi-spectral face dataset that is composed of paired thermal and visible videos. To the best of our knowledge, with face data from 400 subjects, this dataset represents the most extensive collection of publicly available indoor and long-range outdoor thermal-visible face imagery. Lastly, we show that our end-to-end thermal-to-visible face verification system provides strong performance on the MILAB-VTF(B) dataset.



قيم البحث

اقرأ أيضاً

This work tackles the face recognition task on images captured using thermal camera sensors which can operate in the non-light environment. While it can greatly increase the scope and benefits of the current security surveillance systems, performing such a task using thermal images is a challenging problem compared to face recognition task in the Visible Light Domain (VLD). This is partly due to the much smaller amount number of thermal imagery data collected compared to the VLD data. Unfortunately, direct application of the existing very strong face recognition models trained using VLD data into the thermal imagery data will not produce a satisfactory performance. This is due to the existence of the domain gap between the thermal and VLD images. To this end, we propose a Thermal-to-Visible Generative Adversarial Network (TV-GAN) that is able to transform thermal face images into their corresponding VLD images whilst maintaining identity information which is sufficient enough for the existing VLD face recognition models to perform recognition. Some examples are presented in Figure 1. Unlike the previous methods, our proposed TV-GAN uses an explicit closed-set face recognition loss to regularize the discriminator network training. This information will then be conveyed into the generator network in the forms of gradient loss. In the experiment, we show that by using this additional explicit regularization for the discriminator network, the TV-GAN is able to preserve more identity information when translating a thermal image of a person which is not seen before by the TV-GAN.
A number of pattern recognition tasks, textit{e.g.}, face verification, can be boiled down to classification or clustering of unit length directional feature vectors whose distance can be simply computed by their angle. In this paper, we propose the von Mises-Fisher (vMF) mixture model as the theoretical foundation for an effective deep-learning of such directional features and derive a novel vMF Mixture Loss and its corresponding vMF deep features. The proposed vMF feature learning achieves the characteristics of discriminative learning, textit{i.e.}, compacting the instances of the same class while increasing the distance of instances from different classes. Moreover, it subsumes a number of popular loss functions as well as an effective method in deep learning, namely normalization. We conduct extensive experiments on face verification using 4 different challenging face datasets, textit{i.e.}, LFW, YouTube faces, CACD and IJB-A. Results show the effectiveness and excellent generalization ability of the proposed approach as it achieves state-of-the-art results on the LFW, YouTube faces and CACD datasets and competitive results on the IJB-A dataset.
We introduce a new attack against face verification systems based on Deep Neural Networks (DNN). The attack relies on the introduction into the network of a hidden backdoor, whose activation at test time induces a verification error allowing the atta cker to impersonate any user. The new attack, named Master Key backdoor attack, operates by interfering with the training phase, so to instruct the DNN to always output a positive verification answer when the face of the attacker is presented at its input. With respect to existing attacks, the new backdoor attack offers much more flexibility, since the attacker does not need to know the identity of the victim beforehand. In this way, he can deploy a Universal Impersonation attack in an open-set framework, allowing him to impersonate any enrolled users, even those that were not yet enrolled in the system when the attack was conceived. We present a practical implementation of the attack targeting a Siamese-DNN face verification system, and show its effectiveness when the system is trained on VGGFace2 dataset and tested on LFW and YTF datasets. According to our experiments, the Master Key backdoor attack provides a high attack success rate even when the ratio of poisoned training data is as small as 0.01, thus raising a new alarm regarding the use of DNN-based face verification systems in security-critical applications.
Generating visible-like face images from thermal images is essential to perform manual and automatic cross-spectrum face recognition. We successfully propose a solution based on cascaded refinement network that, unlike previous works, produces high q uality generated color images without the need for face alignment, large databases, data augmentation, polarimetric sensors, computationally-intense training, or unrealistic restriction on the generated resolution. The training of our solution is based on the contextual loss, making it inherently scale (face area) and rotation invariant. We present generated image samples of unknown individuals under different poses and occlusion conditions.We also prove the high similarity in image quality between ground-truth images and generated ones by comparing seven quality metrics. We compare our results with two state-of-the-art approaches proving the superiority of our proposed approach.
Facial verification systems are vulnerable to poisoning attacks that make use of multiple-identity images (MIIs)---face images stored in a database that resemble multiple persons, such that novel images of any of the constituent persons are verified as matching the identity of the MII. Research on this mode of attack has focused on defence by detection, with no explanation as to why the vulnerability exists. New quantitative results are presented that support an explanation in terms of the geometry of the representations spaces used by the verification systems. In the spherical geometry of those spaces, the angular distance distributions of matching and non-matching pairs of face representations are only modestly separated, approximately centred at 90 and 40-60 degrees, respectively. This is sufficient for open-set verification on normal data but provides an opportunity for MII attacks. Our analysis considers ideal MII algorithms, demonstrating that, if realisable, they would deliver faces roughly 45 degrees from their constituent faces, thus classed as matching them. We study the performance of three methods for MII generation---gallery search, image space morphing, and representation space inversion---and show that the latter two realise the ideal well enough to produce effective attacks, while the former could succeed but only with an implausibly large gallery to search. Gallery search and inversion MIIs depend on having access to a facial comparator, for optimisation, but our results show that these attacks can still be effective when attacking disparate comparators, thus securing a deployed comparator is an insufficient defence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا