ﻻ يوجد ملخص باللغة العربية
We extend the results of [5], where we proved an equivalence between weighted Poincare inequalities and the existence of weak solutions to a family of Neumann problems related to a degenerate $p$-Laplacian. Here we prove a similar equivalence between Poincare inequalities in variable exponent spaces and solutions to a degenerate $p(x)$-Laplacian, a non-linear elliptic equation with nonstandard growth conditions.
We prove an equivalence between weighted Poincare inequalities and the existence of weak solutions to a Neumann problem related to a degenerate p- Laplacian. The Poincare inequalities are formulated in the context of degenerate Sobolev spaces defined
We consider well-posedness of the boundary value problem in presence of an inclusion with complex conductivity $k$. We first consider the transmission problem in $mathbb{R}^d$ and characterize solvability of the problem in terms of the spectrum of th
We obtain some nonlocal characterizations for a class of variable exponent Sobolev spaces arising in nonlinear elasticity theory and in the theory of electrorheological fluids. We also get a singular limit formula extending Nguyen results to the anisotropic case.
The Neumann-Poincare operator is a boundary-integral operator associated with harmonic layer potentials. This article proves the existence of eigenvalues within the essential spectrum for the Neumann-Poincare operator for certain Lipschitz curves in
We consider the Dirichlet and Neumann problems for second-order linear elliptic equations: $$-triangle u +operatorname{div}(umathbf{b}) =f quadtext{ and }quad -triangle v -mathbf{b} cdot abla v =g$$ in a bounded Lipschitz domain $Omega$ in $mathbb{R