ﻻ يوجد ملخص باللغة العربية
Adding self-loops at each vertex of a graph improves the performance of quantum walks algorithms over loopless algorithms. Many works approach quantum walks to search for a single marked vertex. In this article, we experimentally address several problems related to quantum walk in the hypercube with self-loops to search for multiple marked vertices. We first investigate the quantum walk in the loopless hypercube. We saw that neighbor vertices are also amplified and that approximately $1/2$ of the system energy is concentrated in them. We show that the optimal value of $l$ for a single marked vertex is not optimal for multiple marked vertices. We define a new value of $l = (n/N)cdot k$ to search multiple marked vertices. Next, we use this new value of $l$ found to analyze the search for multiple marked vertices non-adjacent and show that the probability of success is close to $1$. We also use the new value of $l$ found to analyze the search for several marked vertices that are adjacent and show that the probability of success is directly proportional to the density of marked vertices in the neighborhood. We also show that, in the case where neighbors are marked, if there is at least one non-adjacent marked vertex, the probability of success increases to close to $1$. The results found show that the self-loop value for the quantum walk in the hypercube to search for several marked vertices is $l = (n / N) cdot k $.
Quantum computing holds the promise of improving the information processing power to levels unreachable by classical computation. Quantum walks are heading the development of quantum algorithms for searching information on graphs more efficiently tha
We give a quantum algorithm for finding a marked element on the grid when there are multiple marked elements. Our algorithm uses quadratically fewer steps than a random walk on the grid, ignoring logarithmic factors. This is the first known quantum w
The n-dimensional hypercube quantum random walk (QRW) is a particularily appealing example of a quantum walk because it has a natural implementation on a register on $n$ qubits. However, any real implementation will encounter decoherence effects due
We introduce quantum hypercube states, a class of continuous-variable quantum states that are generated as orthographic projections of hypercubes onto the quadrature phase-space of a bosonic mode. In addition to their interesting geometry, hypercube
We study the quantum walk search algorithm of Shenvi, Kempe and Whaley [PRA 67 052307 (2003)] on data structures of one to two spatial dimensions, on which the algorithm is thought to be less efficient than in three or more spatial dimensions. Our ai