ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient quantum walk on the grid with multiple marked elements

61   0   0.0 ( 0 )
 نشر من قبل Peter Hoyer
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a quantum algorithm for finding a marked element on the grid when there are multiple marked elements. Our algorithm uses quadratically fewer steps than a random walk on the grid, ignoring logarithmic factors. This is the first known quantum walk that finds a marked element in a number of steps less than the square-root of the extended hitting time. We also give a new tighter upper bound on the extended hitting time of a marked subset, expressed in terms of the hitting times of its members.



قيم البحث

اقرأ أيضاً

We provide numerical evidence that the nonlinear searching algorithm introduced by Wong and Meyer cite{meyer2013nonlinear}, rephrased in terms of quantum walks with effective nonlinear phase, can be extended to the finite 2-dimensional grid, keeping the same computational advantage BHg{with} respect to the classical algorithms. For this purpose, we have considered the free lattice Hamiltonian, with linear dispersion relation introduced by Childs and Ge cite{Childs_2014}. The numerical simulations showed that the walker finds the marked vertex in $O(N^{1/4} log^{3/4} N) $ steps, with probability $O(1/log N)$, for an overall complexity of $O(N^{1/4}log^{7/4}N)$. We also proved that there exists an optimal choice of the walker parameters to avoid that the time measurement precision affects the complexity searching time of the algorithm.
Adding self-loops at each vertex of a graph improves the performance of quantum walks algorithms over loopless algorithms. Many works approach quantum walks to search for a single marked vertex. In this article, we experimentally address several prob lems related to quantum walk in the hypercube with self-loops to search for multiple marked vertices. We first investigate the quantum walk in the loopless hypercube. We saw that neighbor vertices are also amplified and that approximately $1/2$ of the system energy is concentrated in them. We show that the optimal value of $l$ for a single marked vertex is not optimal for multiple marked vertices. We define a new value of $l = (n/N)cdot k$ to search multiple marked vertices. Next, we use this new value of $l$ found to analyze the search for multiple marked vertices non-adjacent and show that the probability of success is close to $1$. We also use the new value of $l$ found to analyze the search for several marked vertices that are adjacent and show that the probability of success is directly proportional to the density of marked vertices in the neighborhood. We also show that, in the case where neighbors are marked, if there is at least one non-adjacent marked vertex, the probability of success increases to close to $1$. The results found show that the self-loop value for the quantum walk in the hypercube to search for several marked vertices is $l = (n / N) cdot k $.
71 - Simon Apers 2019
This work describes a new algorithm for creating a superposition over the edge set of a graph, encoding a quantum sample of the random walk stationary distribution. The algorithm requires a number of quantum walk steps scaling as $widetilde{O}(m^{1/3 } delta^{-1/3})$, with $m$ the number of edges and $delta$ the random walk spectral gap. This improves on existing strategies by initially growing a classical seed set in the graph, from which a quantum walk is then run. The algorithm leads to a number of improvements: (i) it provides a new bound on the setup cost of quantum walk search algorithms, (ii) it yields a new algorithm for $st$-connectivity, and (iii) it allows to create a superposition over the isomorphisms of an $n$-node graph in time $widetilde{O}(2^{n/3})$, surpassing the $Omega(2^{n/2})$ barrier set by index erasure.
The main results on quantum walk search are scattered over different, incomparable frameworks, most notably the hitting time framework, originally by Szegedy, the electric network framework by Belovs, and the MNRS framework by Magniez, Nayak, Roland and Santha. As a result, a number of pieces are currently missing. For instance, the electric network framework allows quantum walks to start from an arbitrary initial state, but it only detects marked elements. In recent work by Ambainis et al., this problem was resolved for the more restricted hitting time framework, in which quantum walks must start from the stationary distribution. We present a new quantum walk search framework that unifies and strengthens these frameworks. This leads to a number of new results. For instance, the new framework not only detects, but finds marked elements in the electric network setting. The new framework also allows one to interpolate between the hitting time framework, which minimizes the number of walk steps, and the MNRS framework, which minimizes the number of times elements are checked for being marked. This allows for a more natural tradeoff between resources. Whereas the original frameworks only rely on quantum walks and phase estimation, our new algorithm makes use of a technique called quantum fast-forwarding, similar to the recent results by Ambainis et al. As a final result we show how in certain cases we can simplify this more involved algorithm to merely applying the quantum walk operator some number of times. This answers an open question of Ambainis et al.
Quantum computing holds the promise of improving the information processing power to levels unreachable by classical computation. Quantum walks are heading the development of quantum algorithms for searching information on graphs more efficiently tha n their classical counterparts. A quantum-walk-based algorithm that is standing out in the literature is the lackadaisical quantum walk. The lackadaisical quantum walk is an algorithm developed to search two-dimensional grids whose vertices have a self-loop of weight $l$. In this paper, we address several issues related to the application of the lackadaisical quantum walk to successfully search for multiple solutions on grids. Firstly, we show that only one of the two stopping conditions found in the literature is suitable for simulations. We also demonstrate that the final success probability depends on the space density of solutions and the relative distance between solutions. Furthermore, this work generalizes the lackadaisical quantum walk to search for multiple solutions on grids of arbitrary dimensions. In addition, we propose an optimal adjustment of the self-loop weight $l$ for such scenarios of arbitrary dimensions. It turns out the other fits of $l$ found in the literature are particular cases. Finally, we observe a two-to-one relation between the steps of the lackadaisical quantum walk and the ones of Grovers algorithm, which requires modifications in the stopping condition. In conclusion, this work deals with practical issues one should consider when applying the lackadaisical quantum walk, besides expanding the technique to a wider range of search problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا