ترغب بنشر مسار تعليمي؟ اضغط هنا

On the trajectory of the nonlinear pendulum: Exact analytic solutions via power series

63   0   0.0 ( 0 )
 نشر من قبل Nathaniel Barlow
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide an exact infinite power series solution that describes the trajectory of a nonlinear simple pendulum undergoing librating and rotating motion for all time. Although the series coefficients were previously given in [V. Fairen, V. Lopez, and L. Conde, Am. J. Phys 56 (1), (1988), pp. 57-61], the series itself -- as well as the optimal location about which an expansion should be chosen to assure series convergence and maximize the domain of convergence -- was not examined, and is provided here. By virtue of its representation as an elliptic function, the pendulum function has singularities that lie off of the real axis in the complex time plane. This, in turn, imposes a radius of convergence on the physical problem in real time. By choosing the expansion point at the top of the trajectory, the power series converges all the way to the bottom of the trajectory without being affected by these singularities. In constructing the series solution, we re-derive the coefficients using an alternative approach that generalizes to other nonlinear problems of mathematical physics. Additionally, we provide an exact resummation of the pendulum series -- Motivated by the asymptotic approximant method given in [Barlow et al., Q. J. Mech. Appl. Math., 70 (1) (2017), pp. 21-48] -- that accelerates the series convergence uniformly from the top to the bottom of the trajectory. We also provide an accelerated exact resummation of the infinite series representation for the elliptic integral used in calculating the period of a pendulums trajectory. This allows one to preserve analyticity in the use of the period to extend the pendulum series for all time via symmetry.



قيم البحث

اقرأ أيضاً

A sufficient condition for the convergence of a generalized formal power series solution to an algebraic $q$-difference equation is provided. The main result leans on a geometric property related to the semi-group of (complex) power exponents of such a series. This property corresponds to the situation in which the small divisors phenomenon does not arise. Some examples illustrating the cases where the obtained sufficient condition can be or cannot be applied are also depicted.
Here we present some compliments to theorems of Gerard and Sibuya, on the convergence of multivariate formal power series solutions of nonlinear meromorphic Pfaffian systems. Their the most known results concern completely integrable systems with non degenerate linear parts, whereas we consider some cases of non-integrability and degeneracy.
We propose a sufficient condition of the convergence of a generalized power series formally satisfying an algebraic (polynomial) ordinary differential equation. The proof is based on the majorant method.
We propose an analytic proof of the Malgrange-Sibuya theorem concerning a sufficient condition of the convergence of a formal power series satisfying an ordinary differential equation. The proof is based on the majorant method and allows to estimate the radius of convergence of such a series.
81 - Nikita Nikolaev 2020
The singularly perturbed Riccati equation is the first-order nonlinear ODE $hbar partial_x f = af^2 + bf + c$ in the complex domain where $hbar$ is a small complex parameter. We prove an existence and uniqueness theorem for exact solutions with presc ribed asymptotics as $hbar to 0$ in a halfplane. These exact solutions are constructed using the Borel-Laplace method; i.e., they are Borel summations of the formal divergent $hbar$-power series solutions. As an application, we prove existence and uniqueness of exact WKB solutions for the complex one-dimensional Schrodinger equation with a rational potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا