ترغب بنشر مسار تعليمي؟ اضغط هنا

TeV and optical observations of the Be/pulsar binary 1A0535+262 during the 2020 giant outburst

72   0   0.0 ( 0 )
 نشر من قبل Matthew Lundy
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Matthew Lundy




اسأل ChatGPT حول البحث

1A 0535+262 is a Be X-ray binary pulsar and one of the only galactic pulsar systems to show radio jet emission. Characterizing the very high energy emission (VHE, >100 GeV) in these extreme microquasars is critical to understanding their contribution to the origin of galactic cosmic rays. The 2020 giant outburst of this system, where X-ray fluxes exceeded 12 Crab, marked a rare opportunity to investigate the gamma-ray and rapid optical variability of these transient systems while in such an extreme state. This month of activity marked the brightest flare measured in this system. VERITASs developing optical capabilities in tandem with the ability to measure TeV gamma rays allowed for a unique campaign to be undertaken. VERITASs observations of this system during the outburst will be presented in the context of observations at lower energies and previous observations of this system by imaging atmospheric Cherenkov telescopes.



قيم البحث

اقرأ أيضاً

Giant X-ray outbursts, with luminosities of about $ 10^{37}$ erg s$^{-1}$, are observed roughly every 5 years from the nearby Be/pulsar binary 1A 0535+262. In this article, we present observations of the source with VERITAS at very-high energies (VHE ; E$>$100 GeV) triggered by the X-ray outburst in December 2009. The observations started shortly after the onset of the outburst, and they provided comprehensive coverage of the episode, as well as the 111-day binary orbit. No VHE emission is evident at any time. We also examined data from the contemporaneous observations of 1A 0535+262 with the Fermi/LAT at high energy photons (HE; E$>$0.1 GeV) and failed to detect the source at GeV energies. The X-ray continua measured with the Swift/XRT and the RXTE/PCA can be well described by the combination of blackbody and Comptonized emission from thermal electrons. Therefore, the gamma-ray and X-ray observations suggest the absence of a significant population of non-thermal particles in the system. This distinguishes 1A~0535+262 from those Be X-ray binaries (such as PSR B1259--63 and LS I +61$^{circ}$303) that have been detected at GeV--TeV energies. We discuss the implications of the results on theoretical models.
We made a multi-wavelength study of the timing and spectral properties of the X-ray pulsar A 0535+262 during a recent giant outburst in November and December 2020. The flux of the pulsar reached a record value of $sim$12.5 Crab on 19th November 2020 (MJD 59172). We have used the NuSTAR, Swift, and NICER data for our study. We have studied the evolution of pulse frequency, pulse profile, and different spectral parameters during the giant outburst. The variation of pulse fraction in different energy ranges has been studied. We have detected a textit q like feature for the X-ray pulsar during the outburst from the hardness intensity diagram. We investigated the evolution of the pulse period and found the spin period of the neutron star to be $P = 103.58pm 0.01$ s based on NuSTAR data during the rising phase of the outburst. It was found that the spin period decreased with time at a rate of $dot P= -1.50pm 0.05times10^{-7}$ ss$^{-1}$ during the outburst. The timing results revealed the presence of highly variable pulse profiles. The pulse profile evolved from a double peak feature to a single peak in a higher energy range and prominent energy dependence of the pulse profile was established. The variation of pulse fraction with energy is studied during the different days of the observations. The cyclotron resonant scattering feature (CRSF) from the spectrum have been detected at $sim$44 keV and the corresponding magnetic field is B $sim$4.9$times10^{12}$ G. We have studied the broadband spectrum of the source which can be described by a composite model with two continuum components -- a blackbody emission and a cut-off power law. An emission line of iron ($K_{alpha}$) near 6.4 keV has been detected from the energy spectrum.
116 - L. D. Kong , S. Zhang , L. Ji 2021
We report on a detailed spectral analysis of the transient X-ray pulsar 1A~0535+262, which underwent the brightest giant outburst ever recorded for this source from November to December 2020 with a peak luminosity of $1.2$ $times10^{38} rm erg s^{-1} $. Thanks to the unprecedented energy coverage and high cadence observations provided by Insight-HXMT, we were able to find for the first time evidence for a transition of the accretion regime. At high luminosity, above the critical luminosity $6.7times10^{37}$ erg s$^{-1}$, the cyclotron absorption line energy anti-correlates with luminosity. Below the critical luminosity, a positive correlation is observed. The 1A~0535+262 becomes, therefore, the second source after V~0332+53, which clearly shows an anti-correlation above and transition between correlation and anti-correlation around the critical luminosity. The evolution of both the observed CRSF line energy and broadband X-ray continuum spectrum throughout the outburst exhibits significant differences during the rising and fading phases: that is, for a similar luminosity the spectral parameters take different values which results in hysteresis patterns for several spectral parameters including the cyclotron line energy. We argue that, similarly to V~0332+53, these changes might be related to different geometry of the emission region in rising and declining parts of the outburst, probably due to changes in the accretion disk structure and its interaction with the magnetosphere of the neutron star.
We present results obtained from an extensive near-infrared spectroscopic and photometric observations of the Be/X-ray binary A0535+262/HDE 245770 at different phases of its ~111 day orbital period. This observation campaign is a part of the monitori ng programme of selective Be/X-ray binary systems aimed at understanding the X-ray and near-IR properties at different orbital phases, especially during the periastron passage of the neutron star. The near-IR observations were carried out using the 1.2 m telescope at Mt. Abu IR observatory. Though the source was relatively faint for spectroscopic observations with 1.2 m telescope, we monitored the source during the 2011 February--March giant outburst to primarily investigate whether any drastic changes in the near-IR JHK spectra take place at the periastron passage. Changes of such a striking nature were expected to be detectable in our spectra. Photometric observations of the Be star show a gradual and systematic fading in the JHK light curves since the onset of the X-ray outburst that could suggest a mild evacuation/truncation of the circumstellar disc of the Be companion. Near-IR spectroscopy of the object shows that the JHK spectra are dominated by the emission lines of hydrogen Brackett and Paschen series and HeI lines at 1.0830, 1.7002 and 2.0585 micron. The presence of all hydrogen emission lines in the JHK spectra, along with the absence of any significant change in the continuum of the Be companion during X-ray quiescent and X-ray outburst phases suggest that the near-IR line emitting regions of the disc are not significantly affected during the X-ray outburst.
We present simultaneous, multi-wavelength observations of the Small Magellanic Cloud Be/XRB IGR J01217-7257 (=SXP 2.16) during outbursts in 2014, 2015 and 2016. We also present the results of RXTE observations of the Small Magellanic Cloud during whi ch the source was initially discovered with a periodicity of 2.1652$pm$0.0001 seconds which we associate with the spin period of the neutron star. A systematic temporal analysis of long term Swift/BAT data reveals a periodic signal of 82.5$pm$0.7 days, in contrast with a similar analysis of long base line OGLE I-band light curves which reveals an 83.67$pm$0.05 days also found in this work. Interpreting the longer X-ray periodicity as indicative of binary motion of the neutron star, we find that outbursts detected by INTEGRAL and Swift between 2014 and 2016 are consistent with Type I outbursts seen in Be/XRBs, occurring around periastron. Comparing these outbursts with the OGLE data, we see a clear correlation between outburst occurrence and increasing I-band flux. A periodic analysis of subdivisions of OGLE data reveals three epochs during which short periodicities of $sim$1 day are significantly detected which we suggest are non-radial pulsations (NRPs) of the companion star. These seasons immediately precede those exhibiting clear outburst behaviour, supporting the suggested association between the NRPs, decretion disk growth and the onset of Type I outbursts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا