ﻻ يوجد ملخص باللغة العربية
This paper concerns the dynamic stability of the steady 3-D wave structure of a planar normal shock front intersecting perpendicularly to a planar solid wall for unsteady potential flows. The stability problem can be formulated as a free boundary problem of a quasi-linear hyperbolic equation of second order in a dihedral-space domain between the shock front and the solid wall. The key difficulty is brought by the edge singularity of the space domain, the intersection curve between the shock front and the solid wall. Different from the 2-D case, for which the singular part of the boundary is only a point, it is a curve for the 3-D case in this paper. This difference brings new difficulties to the mathematical analysis of the stability problem. A modified partial hodograph transformation is introduced such that the extension technique developed for the 2-D case can be employed to establish the well-posed theory for the initial-boundary value problem of the linearized hyperbolic equation of second order in a dihedral-space domain. Moreover, the extension technique is improved in this paper such that loss of regularity in the a priori estimates on the shock front does not occur. Thus the classical nonlinear iteration scheme can be constructed to prove the existence of the solution to the stability problem, which shows the dynamic stability of the steady planar normal shock without applying the Nash-Moser iteration method.
Although local existence of multidimensional shock waves has been established in some fundamental references, there are few results on the global existence of those waves except the ones for the unsteady potential flow equations in n-dimensional spac
In this paper, we study nonlinear desingularization of steady vortex rings of three-dimensional incompressible Euler flows. We construct a family of steady vortex rings (with and without swirl) which constitutes a desingularization of the classical c
This paper concerns with the existence of transonic shocks for steady Euler flows in a 3-D axisymmetric cylindrical nozzle, which are governed by the Euler equations with the slip boundary condition on the wall of the nozzle and a receiver pressure a
Front propagation in two dimensional steady and unsteady cellular flows is investigated in the limit of very fast reaction and sharp front, i.e., in the geometrical optics limit. In the steady case, by means of a simplified model, we provide an analy
For an upstream supersonic flow past a straight-sided cone in $R^3$ whose vertex angle is less than the critical angle, a transonic (supersonic-subsonic) shock-front attached to the cone vertex can be formed in the flow. In this paper we analyze the