ترغب بنشر مسار تعليمي؟ اضغط هنا

Trans4Trans: Efficient Transformer for Transparent Object and Semantic Scene Segmentation in Real-World Navigation Assistance

399   0   0.0 ( 0 )
 نشر من قبل Kailun Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Transparent objects, such as glass walls and doors, constitute architectural obstacles hindering the mobility of people with low vision or blindness. For instance, the open space behind glass doors is inaccessible, unless it is correctly perceived and interacted with. However, traditional assistive technologies rarely cover the segmentation of these safety-critical transparent objects. In this paper, we build a wearable system with a novel dual-head Transformer for Transparency (Trans4Trans) perception model, which can segment general- and transparent objects. The two dense segmentation results are further combined with depth information in the system to help users navigate safely and assist them to negotiate transparent obstacles. We propose a lightweight Transformer Parsing Module (TPM) to perform multi-scale feature interpretation in the transformer-based decoder. Benefiting from TPM, the double decoders can perform joint learning from corresponding datasets to pursue robustness, meanwhile maintain efficiency on a portable GPU, with negligible calculation increase. The entire Trans4Trans model is constructed in a symmetrical encoder-decoder architecture, which outperforms state-of-the-art methods on the test sets of Stanford2D3D and Trans10K-v2 datasets, obtaining mIoU of 45.13% and 75.14%, respectively. Through a user study and various pre-tests conducted in indoor and outdoor scenes, the usability and reliability of our assistive system have been extensively verified. Meanwhile, the Tran4Trans model has outstanding performances on driving scene datasets. On Cityscapes, ACDC, and DADA-seg datasets corresponding to common environments, adverse weather, and traffic accident scenarios, mIoU scores of 81.5%, 76.3%, and 39.2% are obtained, demonstrating its high efficiency and robustness for real-world transportation applications.



قيم البحث

اقرأ أيضاً

Common fully glazed facades and transparent objects present architectural barriers and impede the mobility of people with low vision or blindness, for instance, a path detected behind a glass door is inaccessible unless it is correctly perceived and reacted. However, segmenting these safety-critical objects is rarely covered by conventional assistive technologies. To tackle this issue, we construct a wearable system with a novel dual-head Transformer for Transparency (Trans4Trans) model, which is capable of segmenting general and transparent objects and performing real-time wayfinding to assist people walking alone more safely. Especially, both decoders created by our proposed Transformer Parsing Module (TPM) enable effective joint learning from different datasets. Besides, the efficient Trans4Trans model composed of symmetric transformer-based encoder and decoder, requires little computational expenses and is readily deployed on portable GPUs. Our Trans4Trans model outperforms state-of-the-art methods on the test sets of Stanford2D3D and Trans10K-v2 datasets and obtains mIoU of 45.13% and 75.14%, respectively. Through various pre-tests and a user study conducted in indoor and outdoor scenarios, the usability and reliability of our assistive system have been extensively verified.
Lacking the ability to sense ambient environments effectively, blind and visually impaired people (BVIP) face difficulty in walking outdoors, especially in urban areas. Therefore, tools for assisting BVIP are of great importance. In this paper, we pr opose a novel flying guide dog prototype for BVIP assistance using drone and street view semantic segmentation. Based on the walkable areas extracted from the segmentation prediction, the drone can adjust its movement automatically and thus lead the user to walk along the walkable path. By recognizing the color of pedestrian traffic lights, our prototype can help the user to cross a street safely. Furthermore, we introduce a new dataset named Pedestrian and Vehicle Traffic Lights (PVTL), which is dedicated to traffic light recognition. The result of our user study in real-world scenarios shows that our prototype is effective and easy to use, providing new insight into BVIP assistance.
86 - Fangrui Zhu , Yi Zhu , Li Zhang 2021
Semantic segmentation is a challenging problem due to difficulties in modeling context in complex scenes and class confusions along boundaries. Most literature either focuses on context modeling or boundary refinement, which is less generalizable in open-world scenarios. In this work, we advocate a unified framework(UN-EPT) to segment objects by considering both context information and boundary artifacts. We first adapt a sparse sampling strategy to incorporate the transformer-based attention mechanism for efficient context modeling. In addition, a separate spatial branch is introduced to capture image details for boundary refinement. The whole model can be trained in an end-to-end manner. We demonstrate promising performance on three popular benchmarks for semantic segmentation with low memory footprint. Code will be released soon.
This work studies the problem of object goal navigation which involves navigating to an instance of the given object category in unseen environments. End-to-end learning-based navigation methods struggle at this task as they are ineffective at explor ation and long-term planning. We propose a modular system called, `Goal-Oriented Semantic Exploration which builds an episodic semantic map and uses it to explore the environment efficiently based on the goal object category. Empirical results in visually realistic simulation environments show that the proposed model outperforms a wide range of baselines including end-to-end learning-based methods as well as modular map-based methods and led to the winning entry of the CVPR-2020 Habitat ObjectNav Challenge. Ablation analysis indicates that the proposed model learns semantic priors of the relative arrangement of objects in a scene, and uses them to explore efficiently. Domain-agnostic module design allow us to transfer our model to a mobile robot platform and achieve similar performance for object goal navigation in the real-world.
In deep CNN based models for semantic segmentation, high accuracy relies on rich spatial context (large receptive fields) and fine spatial details (high resolution), both of which incur high computational costs. In this paper, we propose a novel arch itecture that addresses both challenges and achieves state-of-the-art performance for semantic segmentation of high-resolution images and videos in real-time. The proposed architecture relies on our fast spatial attention, which is a simple yet efficient modification of the popular self-attention mechanism and captures the same rich spatial context at a small fraction of the computational cost, by changing the order of operations. Moreover, to efficiently process high-resolution input, we apply an additional spatial reduction to intermediate feature stages of the network with minimal loss in accuracy thanks to the use of the fast attention module to fuse features. We validate our method with a series of experiments, and show that results on multiple datasets demonstrate superior performance with better accuracy and speed compared to existing approaches for real-time semantic segmentation. On Cityscapes, our network achieves 74.4$%$ mIoU at 72 FPS and 75.5$%$ mIoU at 58 FPS on a single Titan X GPU, which is~$sim$50$%$ faster than the state-of-the-art while retaining the same accuracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا