ﻻ يوجد ملخص باللغة العربية
Neutron star tidal deformability extracted from gravitational wave data provides a novel probe to the interior neutron star structures and the associated nuclear equation of state (EOS). Instead of the popular composition of nucleons and leptons in neutron stars, we include hyperons and examine the role of hyperons in the tidal deformability and its impact on the symmetry energy in a relativistic mean-field approach with the density-dependent parametrizations. The hyperons are found to have significant impact on the deformability, correlated sensitively with the onset density and fraction of hyperons in neutron star matter. Moderately lower onset density of hyperons can yield considerable modification to the tidal deformability and shift its inference on the nuclear EOS. The future measurements of the tidal deformability at multi-fiducial star masses are anticipated to lift the degeneracy between the contributions from the hyperon component and symmetry energy.
There is a growing interest in investigating modified theories of gravity, primarily, with the aim of explaining the universes accelerated expansion, which has been confirmed by several independent observations. Compact objects, like neutron stars, e
The liquid-gas phase transition in hot asymmetric nuclear matter is studied within density-dependent relativistic mean-field models where the density dependence is introduced according to the Brown-Rho scaling and constrained by available data at low
We explore the effects of strangeness and $Delta$ resonance in baryonic matter and compact stars within the relativistic-mean-field (RMF) models. The covariant density functional PKDD is adopted for $N$-$N$ interaction, parameters fixed based on fini
Based on relativistic mean field (RMF) models, we study finite $Lambda$-hypernuclei and massive neutron stars. The effective $N$-$N$ interactions PK1 and TM1 are adopted, while the $N$-$Lambda$ interactions are constrained by reproducing the binding
New effective $Lambda N$ interactions are proposed for the density dependent relativistic mean field model. The multidimensionally constrained relativistic mean field model is used to calculate ground state properties of eleven known $Lambda$ hypernu