ﻻ يوجد ملخص باللغة العربية
There is a growing interest in investigating modified theories of gravity, primarily, with the aim of explaining the universes accelerated expansion, which has been confirmed by several independent observations. Compact objects, like neutron stars, exhibit strong gravity effects and therefore are used to study modified gravity theories. We use the $f(R)=R+aR^2$ model, where R is the Ricci scalar and $a$ is a free parameter. This model has been studied both perturbatively and non-perturbatively. However, it was found that perturbative methods results in nonphysical solutions for the neutron stars. In this paper, we examine neutron star properties, such as mass, radius, tidal deformability in non-perturbative $f(R)$ gravity model with density dependant relativistic equation of state with different particle compositions. The strange particles in the core of NS in the form of ${bf Lambda}$ hyperons, $K^-$ condensate, and quarks are considered. We have observed that while the mass-radius relation allows for a wide range of parameter $a$, when tidal deformability is considered, the parameter $a$ is constrained down by one order.
Neutron star tidal deformability extracted from gravitational wave data provides a novel probe to the interior neutron star structures and the associated nuclear equation of state (EOS). Instead of the popular composition of nucleons and leptons in n
The effects implied for the structure of compact objects by the modification of General Relativity produced by the generalization of the Lagrangian density to the form f(R)=R+alpha R^2, where R is the Ricci curvature scalar, have been recently explor
We investigate the tidal deformability of a superfluid neutron star. We calculate the equilibrium structure in the general relativistic two-fluid formalism with entrainment effect where we take neutron superfluid as one fluid and the other fluid is c
We analyse configurations of compact stars in the so-called R-squared gravity in the Palatini formalism. Using a realistic equation of state we show that the mass-radius configurations are lighter than their counterparts in General Relativity. We als
The radii and tidal deformabilities of neutron stars are investigated in the framework of relativistic mean-field (RMF) model with different density-dependent behaviors of symmetry energy. To study the effects of symmetry energy on the properties of